
Vhevmans.
Aowhere dse in North dmerica dowe find within a limited region sund ex-ten-ive variations among freshater fishes as on the lacilirsloper This is trac whether we have rerence the the extent of variation between the extremen , it the same family or the timits of variation in any given suecies.

I comparison of the members of the eight families of lishes having repreentative un hath the Ithantic and the Pacilie shores. show that, on an areage vach of thes familie has fons genera and sixteen speeies on the Pacific slope, and sevell semera and thirty-six species on the Athantic. Vet, although the mumber of species is more than wice as great on the Athantie shope, the variation in the momber of tin rays among the laceitic shope seces is greater in all hat two tamilies. I have reemat? ${ }^{\dagger}$ made a detailed eomparison between the members withe different familiss, and there attributed this great extent of variation totwo canses. First : the tamas is of diverse origin ; some of the members are of Asiatic, while where are of Sthantic denent. Semond: the fana is new as compared with the Alamic shope fanma, and has not yet reached a stage of staple equilibrimm. It is possible, an sugrested to me by President Jordan, that the Pacitie slope famat has retained its primitive characters more nearly than the dantic slope fana, which shows signs of degeneration in its fins and weth.

This great variation between the membrers of the satme families is not confined to the tin rays. It is eftally the of other characters, but can best be dewonstrated ${ }^{\circ}$ in characters whose variation can be namerically expressed. The pharynseal teeth oi the (Yprinida ofler another striking example of these variations anmer the l'a $\begin{aligned} \text { itic shope spectes. In a mumber of cases the variations of the Pacifie slope }\end{aligned}$ spenies extemd along delinite amd parallel lines. I have pointed out sonte withers. in the paper groted above. These lines are directed towards an increate of ray:and towards a mondification of rays into spines.

The following yootations from Gillert and Everman's recent work on wh Columbia River basin, \ddagger illnstrate the variation among the different sperimens of the same species. "The range of variation seems to be very great, and waracthers which are of modoubted specific value when applied to Athantic dramage

[^0] Bath suralled speries seems th be in at very matable state of equilibrimm, and not to have yet asimmed or been able to retain, with any degree of permanence, any set
 varies from ti to 70 in mombrr ; the hathel [ageneric chatacter] is present or abrent: the pharygral tecth varv from $1,4-4,0$ to $\because, 4-4,1$; and the dorsal fin varies moll in pasition and somewhat in size. There dhararters wedre in varions combinations, and with some of these are often corvelated peenliarities of physiogumy and general appearame, all of which may serve to put a dertain stamp
 Thene ohemations, cojecially those contaned in the last sentence, areord exactly with the resulte oltained loge me another fish and confirm my statement which will be further re-enfored bey the perent paper, that "ead locality has a variety which in the aggegate is difterent from the variety of every other locality."

The remarkable variation of the Pacitic shape species, and more expectatly the varia ion in the fin rays, was lims noted in preparing my acomot of the ruecimens cobleceded in the Cohmbia and Frazer hasins.* This variation was most
 sems. I had abont org sperimens, whected in the Frazer and Cohmbia -r:tems, from tide water to an elevation of 2, Tsibleet. The laterexplorations of filhert and
 af tha points atated ber me. For all the date ancerning the lin rays of the specimensoblleded be (iilhert and Evermam, I am indehted to them. Theirexamination of these specimens was made to tent eertain comehnsoms reached he me, and their data, therefore join mine. In combting the anal rays, I comated the rudimente at the begiming of the lin. These were mot combted by dillert and Evermam, and lobring their data in perfert acood with mine, it is neressary to add two th the momber oi anal rays. Whike the momber of rudimentary rays is not always twe it is so oforn that the exerptions would forbably mot alter the gencual results.

At the time I began my stadics of these forms, they were regatad as two -pecios. loming a peonliar genns, libhadsonims. They were known to inhabit
 bohind the ventral lins was marded as the whater separating them generically frem the related foms. If soon berame evident that, while some eperimens

[^1] bultoclns: and lateralis were distinguished as iollows:
 - lightly projecting herond the upper. Coloration platin, the side bright silvery, rtimson in males in apring. scales 13-fio 6 .

bullentur.

 Rhakish atwee a dark lateral hand: the interspares and belly pale; erimsom in male in summer. sale $1:$ - -5, - 1 .
lateralis.
Nobetter tistignisthing marks conld be wished by ans stematis. These Whathers were iombl the so bridged, that the extremes woth mot be specifically su-talised ame one of them, probatly ont of deferenee th the athority of my
 taised as a varicty of the other. Now 1 am inelined toregand heterults as a symorym of bultentus with dilhert and Exermann, lmt I mast take exeption to
 teatus ocempying the same brook with its parent form." I fomad bettotus at the

 same "hrook" with its parent form. Gor anme allied feedes-between which and shborecies there in, after all, but a mental differene-are, even by dithert and Evermamm, admitted to live side by side (Alynsin felorater and rmuthla at Tmatilla).
 as the fall, will permit. No wher pere is fomm the the Fraterstem nor in the C'ulumbia basin proper. The sperimens fom Browns tilleh were deseribed
 from wher localities lats shown then to be but me of the manerons lowal varia-
 suake alowe the falls. The lan fwo belong to a dillement section of the gemes

 is fomed from thin perint tor the hembaters. I comparison wi hydrophlor, buttoutus and gilli. the -peemens from Browns (inlah, makes it ghite ertain that they are ath montitications of the same form.

Below rate evern a nomber of tables which show the rariation in severat ＂haraters．Thear talikes ate all from my own specimens．

I have frequently observed that the largest individuals among the minnows usatly have abnormal numbers of teeth．

Equidistant from hase of midnle camdal rays and a point above midde of pupil．
A Aterior tooth of main row on left side is large，lagger－shaped，and remote from the ，thers，and points inward．

Equidistant frem base of midlle camdal rays and upper angle of preoperele．
Equidictant from lase of midhle eamlal rays and posterior marsin of eye．
TABLE OF VARIATION FOR EIGITT SPECIMENS FRON SICAMOUE．

	$\begin{aligned} & \approx \\ & \text { 的 } \end{aligned}$	$\begin{aligned} & \dot{\vec{V}} \\ & \stackrel{\text { V/ }}{訁} \end{aligned}$	$\overline{\overline{E x}}$		－	－	为	liemarks．
1 1 2 3 1 5 6 8	$\begin{aligned} & 82 \\ & 92 \\ & 92 \\ & 90 \\ & 85 \\ & 80 \\ & 80 \\ & 80 \\ & 77 \end{aligned}$			$11-6)^{6}-6$ $11-62-6$ $1+62-6$ $12-60-5$ $12-60-5$ $10-62-5$ $11-60-6$ $11-59-5$ $11-61$		4 3 3 4 4 4 4 4 12 $1 \frac{1}{3}$		Keel indistinet．

Equidistant from base of midde candal rays and apper angle of preopercle．
Equilixtant from base of middle eamlal rays and a point above milllle of pupil．

Equidistant from base of midule candal ray and oceiput heginning of sealed revion .
Dusal nearer base of midhtle camall r ys tham oceiput.
Equitistant from base of middle ambal rase ant uper angle of properele.
Fatuilistant from bace of millle candal rays and fosterior magin of eye.
From these tables it will be motioed that the momber of dorsal rays is ghite comstant, being from 10 to $\mathrm{I}:$. The variation in the anal is enormons. hut this. 1 -hall treat in detail. The scales are seen bo vary from 10 to 14 above the lateral line; from on to ti.3 along the lateral line and from in to below the lateral line There is mothing masmal in these variations. they are surpassed or equalled ly other members of the same family. The variation in the teeth is great. With one exeption, there are two teeth in the lesser row oi the lett sile. The major row on the leit sifle comtains 4 or s teeth in the proportion of 1 to ti. In the right sile $: 4$ and \bar{t} teeth were bomd in 4,30 , and 2 specimens respectively. In the leser row oi the right side 18 -precimens had one tooth, 3 had 2 teeth and 1 had 3. Thi last specimen with dental formala $\because, 5-5,8$, execeth, the dental firmbla of all the fi-s Alamtio stope seceies of this family. Among these demal formula we timl variations, the extremes of which have been taken as generic characters. The different combinations of terth and the nmoler of pecimens having each

 (leven with $2.51,1$; sixteen with $2.5-4,2$; ome with $2,5-5,3$. The hsmal or nominal formala is $2,5-4,1 \mathrm{~m} \because$. The variation through ten different combinations is exceptional.

The proportions, while vareing eonsiderably, do not -how any wider thermations than usual. The perition of the doral. on the wher hant, varies from mituway irom have of the middle candal rays and from a pmint helind tw a print abore the milllle of the exte

In the development of the keel hehind the ventral fins we find again a areat Hutuation in suecimens from the same lecality. In some, the keel is very harp; in others it is entirely absent. and hetween the forms, we have all shade of variation. If uniform, it would he of generic valuc.

Now, as to the variation of the anal rays. The loweet mumber reworded is $1: 3$ (ater adding 2 to trilhert and Evermam:- lowest mumber) and the highe-t is 24. This gives a total variation of 12 rays. This wonk low a large variation for any ti-h. lont lecomes phenomenal when it is considered that the variation in the mmber uf anal ray of the $1 \boldsymbol{i}$ Athantic slope speries extend- only irom if 14. a tutal variation of but! for $17 . \overline{\text { s opeches as compared with the variation of } 12 \text { for }}$ a single species. The highnmmer oi rays reathed is alsophemenal, for: leaving wht of enn-isleration the two rulimentary spines. the highent mumer of anal rays. ㅇ.? i ten more than the number fomed in any uther lacifie Cyprinuland eight more than the number fomm in any Litantic -pecier. The arerave number ot rays i- eventeen. The variation tolower nombers extends throngh 4 rays in 1%.
 Sut only is the extent of variation greater toward-higher bilmbers. but the nmuber of -pecimen- varying in that direvtion is melngreater. wi wisperimenbut 2.2 per cent. have the arerage mmber of ray. Thi- is the lareent per eent. fir ang siven momber of rays. Thirty-four per tent. wi all the secimen- have
 the average numbw. A mone striking illustration of determinate varianion conlad wot be wished.

Fisure l graphinally represent the variation of the -pectes as shom bey the - - wecimens examined. The total hight of the vertical lises repronent the zreatert passible mamber. 100 per cent. that conld bave the sriven mamber ot anal rays indicated at the butom wi the lines. The enve shows the actual per cent. 口f -pecimen- havine each particular mumber of ray. Were the variation
 whleney to a higher number of ray- in thin tish. It may he well the hear in mind
 enrve on the right - while at leasi one. pohably two, related spedie- living in the head-water of the snake River have fewer rave i. ... joins thic arve on the

 srande.

Ton ianditat, the stuly of the laxal rariations I give helow all the data com-

 tont of variation in the anal rays in the spormens fom the lowaty, ame the - the

 - blane the average mamber of rays lor the peomens of the locality are in italien

Aiter a decaifed examination of the sperimens collected by myself l foum that every locality has a variey permlar to itsedf. The number of localities hat been trebled bey the explomations of (iillert and Evermam, and the mumber of
 mon- bars out the above satement for every locality examined by them. Enfortunately they allowed themselves to be side-tracked by minor issues, and did not memtion this fact of heal variation "xeep in eomeetion with another speefes,

1 collered at three localities in the Fraser basin. It Mission, B. (.., 1 n)tained seventy-nine opecimens in water which is affected be the high tides. It Sic:amons, at an elevation of 1,300 lect, I collected fifty-eight specimens. In Giriftin Lake, at an elevation of 1 ,! 40 feet, I serured fonrteen specinens. Four others were sedured at Kambops, but these are tow few to aid his in ons study.

The variation for these localities is represented by the there curves of ligure two. The reetical lines stand for fin rays to total height of the figure for 100%. The varions hoights of these curven represent the per cent. of specimens having the given nmmer of rays. The variation is seen to be much the greatest at Missiom, a fact which is largely to he atributed to the greater momber of seecimensecured at thispare. The variation from the normal. Which is nincteen rays, to a higher momber of rays, is as great as the entire variation for the next locality. At Nicamons a mach larger per cont has the normal mumber of rays, lat the mormal number has been deereased to seventern The eure for (iriftin lake is interesting, beanse the momal number al ras has agian been dereasad ly two. In other words, the higher the altitule the fewer the momber of rass and the narrower the limit, f variation. Noreorer, the emers are not symetrial for any of the thre localities, but in the aggregate the more gradnal siope is on the sidu of an inerease in the mumber of rays a condition which, ensidering the general variation of ray's on the lamilie Slope, seem- to inticate that the number of rats of thin -peries in the Frazer sytem is increasing, and that the increase is pros gressing from lower to higher atatules.

Aglance at the remaining curves will be sulle ient th show that motwormer are alike, that the per cent. of specimens hatring a given mamber of rate differ with wach locality. Naturally the curves constructed from a large number of sperimens reperent the trme anditions better than the emese constrated from

[^2]but afon. The extent of the variation varim larely with the mumber of -peci-men- examimel; that is, the prolathility of seroring extremes leeromen greater whith : In incre:

The extaleat extent of vatiation for any loxality as far as kown is thomgh
 pared. It dereases to about live ratse with ten meximens. The wal ratiation

The ghtotion of variaton with elevation is an interesting obe and may he taken "! in sthme detail.

$\begin{gathered} \text { Drerage } \\ \text { Nubler of } \\ \text { Ray } \end{gathered}$	Anmber uf Lumalities.	Lomalitis With Their kilevations.
$1 i$:	on the Columbia, 1, tio.
116	-	Lake Washingtom, 1: Lmatilla Rirrr, Pendleton, Ioro: spokanc liver, 1,910 ; 'olville River, Mevers Fat's, Fidon 4"Oreille River. Newport, 2,000.
17	7	Newintum Rivar, Chehalis, 0t: Natchess River, North Yakima, 1, 保: Sieamous, l.ont Hangman Creck, Spokane, 1,910: Fimall ('rerk, 2,J01; 1'ost Creek, :3,100; Flat Head Lake, 3.100.
1,	:	chuek River, 'luehalis, 2tht.
1.1	.	Mission, 1: I matilla, B00: Wialla Wralla River, B20; Potlateh Creek, 1:2 (H) ; Kimboops. 1,15*.
-1)	3	Clear if a er leniston, F50: Fnake kiver, Jayette. 2.150; Collmbia liver, I'asen. 375.

The hewent arerage, 1.5 , is fonnd in but three hocalities, the lowest of which is

The serond arepage is fomall athe way fom tide water to an elevation of $\therefore .3+t$ ied. It is. howerer, notable that only one of the localities, Lake Wash-

The tifh arerage, l! may, is iomed in dive lecalities, there of which are below 1.1000 iect, and the highest in at 1.000 .
 at :an clevation of low than 1,000 fied.

This grouping hes not show any miform variation with the altitnde. It
 only one of the som having an arerage of 16 rays is fomd below 1,000 feet, and that but one of the eight having an aserage of 17 rays is found below 1 , ofoo feet. From the lat but the seremens are known. It may be farther emphatized that
 and hat two of the there having an aremgeof :0 mase are fomm helow 1.000 feet. Generally the lower lowality has the hager momber of rays, tw wheh the are - everal motahle exceptions, Laku W:angon and suake liver at Iayette. Theme

Taking the -peremens from the different grongs of bealities we abain the iッllowing:

Elevation. Feet.	Xinmber of lanalities.	Number of suecimens.	Extent of Variation.	dieneral Average uf Amal Fiay.
1 tor	,	14:9	11	18.4
1.05- 10.2000	1-2	-14	10	11.14
$\because(0) 1$ (10, $3,1(4)$	-	-	111	$17 \cdot$
\therefore,901 t11 -	1	111	,	16

Whether we "omeder the number of lowalities having a high aterage of rays or whether we rombler the arerage of all the secemens from a smilar hations.

 tion for these thate horizons is given in the there cenves of ligure os.

 rivers belong to - (eparate ahort water monsor. Eliminating these and considering the localities of the Firater and of the Cohmhia systems separately we wet the conditions dempribed? for the Frakr sytem alowe and fow the folmbia system the following-aranging the localitios in the wrer of clevation :

()nly wne streimen.

 Ifere, whe we have data fom many widely oparated hamehes, a close variation of rays with altiturle is not lomml. Laxal iswew have moditied nationa! tendancien among flan fishew in the Cohmbia statem.

Among the lowality vores (ligures t amd following) the ideal curve is mos hearly appoathed at (ahlwell. The variation fom the average is here equally great in hoth dieections, and the come of the asemding variation is almont iden Lical with the "urve of the desembling variation. Nearly as ideal conditions are found at litile spokame, where the extent of varation ix mud smaller. A prion - Heh the deviation- from it are many and great. The many shonlders and peakx in bealitie- irom whid but few - reoimens have been abllected, indicate prohath! buthing at mach a- the lack of a suflicient number of specimens. When hat ten
 in the dharactor of the dowe that the localities with less than twenty serimen maty he di-misald withon iurther notice.
 rage in the predominamt one, we have onver, such as that of the Payette hiwer where the momber of summe having $16,17,18,14$ amd 20 rays, is nearly chat.
 (olville and Comatha, in which two mmbers prefominate, with the introwning number in minority. The comblions are most marked at Vmatila, where we hate two incipient varietien with 15 amd 21 as the predominatin momber of rave

I have given at the outset the probable canse which have bronght atront the great differences between the lacitic slope tisher.

We mast look to other canses for the great variation between suecies of undonbted Atlantic origin and especially the variation in the same species, which teaches its culmination in Leuciscns beltotus and A gosia anhile. The climatic, altitudinal and geologieal differences in the different streams and even in the length of the same stream are very great on the Pucific slope. To these different enviromments we must attribute the conditions set forth in the present paper for Lemeisous butteatus. These differences in different localities in the same stream can only become established in nom-migratory species. No sueh differences are to be expected for a migratory species. Lsolation ior the specimens of any lowality when free intermigration is posible, seems strange. An analogons condition is to be found on the Galapagoes Islands. Dr. Banr telle me that islands within phan sight of eath other harbor distinct varieties of the same - peece of hird- which conld reatily intermigrate, but du not.

This raises the question of the sort of intluence excerted by the environment. I. it merely selective, or is it directive? Is the variation promisenoms and inherent in the species, or is it determinate and forced in certain directions by the enviromments? The lattor seems to me the better way of reading sneh conditions as are represented by the many carves whieh show a greater variation towards an increased nmber of rays than towards a decrease of rays. Here the variation is not promiscuous, but definitely determinate. See, in this connertion, the curve for all the speeimens.

The origin of new varieties is admirably illustated by the enres for lake Washington and Umatilla. In these, two distinct jreaks are found. While no varictal value is claimed for these peaks, isolation of members of sneb peaks, either physologically or loeally, wonld tend to establish such incipient varicties as - peries.

EXI'IANATIOS UF FIGTRES.

The vertical lines in ath cases stand for a definite number of amblry. The total locight of the figures represents 100 per cent., and the height of the enrves at any point, the per cent. of specimens having the particnlar nomber of rays in the anial.
Fir. 1. Curve of variation for 217 specimens of Lencixens hydiophlox from the upper snake, and 825 specimens of Lencisans balteatus from many localities, ramging from 1 to over 5,000 feet. The two series of specimens are combined in the broken line curve.

Fig. ‥ Three enrves showing the variation of the three localities represented irom the Frnzer system:

Griffin Iake, 1,900 feet, 17 specimens.
Nicamons, 1,300 feet, 88 specimens.
Mission, 1 foot, 79 , specimens.
Fig. : Three curves showing the variation:
u, of 234 specimens from 1,000 to 2,000 feet elevation;
b, (broken line) 388 specimens from 2,000 to 3,000 feet clevation;
c, 189 specimens from 1 to 1,000 iect elevation.
Fig. 4. Variation of 99 specimens from Caldwell, $2,: 272$ feet.

Fig. 6. Variation of 70 specimens from Little Spokane, 1,850 fect.
Fig. - Variation of 79 specimens from Mission, 1 foot.
Fig. K. V'ariation of 1.54 specimens from Paycte River, 2,150 feet.
Fig. 3. Variation oi 26 speeimens from Pendleton, 1,070 feet.
Fig. 10. Variation oi 16 speeimens irom Clear Water, 750 feet.
Fig. 11. Variation of 14 specimens from hrown's Guleh, 5,344 leet.
Fig. 12. V'ariation of 67 specimens from Small Creek, 2, 100 ieet.
Fig. 18. Variation of $4 \bar{i}$ specimens from Lake Washington, 1 foot.
Fig. 14. Variation of 22 specimens from Umatilla, 300 feet.
Fig. 15. V'ariation oi 21 speeimens from Colville, 1,200 feet.
Figg. 16. Variation of 18 specimens from Golden, 2,550 feet.
Fig. 17. Variation of 13 specimens from Skookumehnck, 204 feet.
Fig. 18. Variation of 11 specimens from Hangman's Creek, 1,900 feet.
Fig. 1!. Variation of 12 specimens from Flat Head Lake, 3,100 fect.
Fig. ©0. Lenciscus balteatus from Mission, the specimen now in the British Musenm.
Fig. :ll. Senciscus gilli, irom Brown's Guleh.
Fig. 2世. Lewcisens hydrophlor.
The last two cuts are reprodnced by permission of Hon. Marshatl Mebonald, I. S. Commissioner of Fish and Fivheries.

[^0]: Contrihutions from the Zoilogieal Laboratory of the Indiana University, No. 11.
 \dagger Results of explorations in Western Canada and Northwestern Conited states. Bull. UT. S. Fish Comm. for 1894, pp. 101 to 132, plates 5 tos. June, ls94.
 \ddagger Report of the Commissioner of Fish and Fisheries on fnvestigations in the Columbia River basin in regarel to the salmon Fisheries. Washington, 1s94. I lieput amon Investigations in the Columbia River Basin with Descriptions of Four New specios of Pishes.

[^1]: This variation in the same speces does not seem to be confined to the fishes. Professor
 a new tunimate desurited hy him.

[^2]: In their reent paper Gilbert and Evermann have raisert this sperifie statement, wheh orears in my parre guoted above, into the dignits of : " theory " and "generalization." which it was never intended to tre, and their arguments aqaint it as a " brony" aml" gen eralization" are, therefore, nut apropriate.

