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NoTK Relative to Peirce's " Linear Associative Algebra." James Byrnik

Shaw, D. Sc.

I have no doubt many readers of Benjamin Peircc's classic work have found

somt! difficulty in its perusal from the lack of examples of the algebras de-

veloped. That such a completion of the work was intended is shown by 1[ 2, p. 4,

and the last three lines of page 119. The following method of exemplifying the

subject may be of use or helj). It is in a succinct form thus: Every unit in an

i'lgabra of this book is an operator of a matrical kind upon aground of what we

may call vectors. The whole work is thus a treatise on groups of such operators.

This explains its abstruseness. Now for all cases in which the ground consists of

two or three or four vectors, the units can be represented by the linear vector

operators of quaternions, or linear quaternion operators. The relative forms given

by Mr. C. S. Peirce may be immediately translated into such quaternion lorms.

Thus we may write, (a, fi, y, being vectors such that S. a fi y = 1, and Zj, l.^, l-s, U,

being quaternions such that S. /j A.ij '3 ^4 = 1 *)•

Algebra ai, i = aS.(iy{).

" bi, (' = a S. )' «
( ).

a,, i = aH.ihi) + (iS.ya{)', j=:aS.7a{).

h„ i = aS./3>'(); j = aS.ya().

" C2, i = a8.ya()+/3S.«/?(); j = aS./?y().

" d^, i^ hS.{) A.l.lJ,; J = kS.{)A.lJ,l,.
"

a3, t = aS./3>() + /3S.>'a()+7S.a/?();j=aS.>'a() + /3S.a^();

k= aS.afi{).

a'„ i = «S./?7()+/3S.y«(); i=^aS.ya(); k = aS.a(i{).

a-3, i = -l,S.()A. 1,1J ^ -l^S.{)A. hhk ; j = - I, S. ( ) A.l,

IJr, k^-l,8.()A.l,l,l,.

h„ i =~l„S.{)A.l,Ul,+l,S.{)A.lJ,l,-l,8.{)A.l,LI,;

j = l, 8.{)A.l,l,l, — l^B.{ )A.IJJ,; k = -l,S.()A.l,l,l,.

b'3, i = -
/i S. ( ) A. /,,/,/, + /, S.

( ) A. IJ J., ; J= /, S. ( ) A. IJ, I, ;

k =— h,l, S. ( )A.lJJ,-}-l^S.{ )A.lJ,l,.

c„ i= -/, S. ( ) A.lJ,l,+l^f^.() A.l,l,L; .; = /, S.( ) A./, /,/.,;

A = - a /, S. ( ) A. /3V, — /, S.( )A. /,/o/3 + /^ S. ( ) A. IJ, I,.

"
dj, i= ii^.afii }; j^n^.n.f3(); k=aS.ya().

63, 1 =-/,8.( )A.l,!J,-j^-l,^.( )A.I l,l,+l,S.{)A.l,IJ,;

ifc = /,S.
( )A.IJJ^ — U^ S. (

)A.l,tJ,.

*) A. l^lal^ = S. V/^V/^VJ, — V^j.V.V/jVi,—V/^.V.M.V/j—VJ, V.V/^V^a.

S. liA.lj3li== — S. L_ A. IJJ, -H. l^ .\.l,l,L_ = - 8 ?, A. IJJ.,.
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Algebra g„ i =aS./3y(); j = aS.ya(); /;= /? 8. ^ >' ( ) ; / = /3S.ya().

" hp„i=l,S.{)A.lJJ,-l,S.{)A.l,lJ,;j = -l,S.()A.lJ,l,-

k = ~-l^S.{ ) A. l^lji — 1-, S.( )A. IJrJ^ ; 1=1, S.( )A. ^Ji/j ;

" bkg,!-^/^ S.
( ) A. U3/4 -?2 ^- ( ) A. l,Uh + /3 S.

( ) A. /,/i/, ; i^-
Zi S.

i ) A. LJJ., + /2 S.
( ) A. /,/i/, ; k= l, S. A. /,/,/,

;

l = -l,^.()A.I,lJ,; m = -l,S.{ )A.l,lJ,; n = -l,8.

{) A.l,l,h.

hmQ,i = a S. p y { );J= a S. y a i) • k= a 8. a 13 {); 1 = fi8. fiy {) ;m =
i3S.ya{)- n = i3Rap{ ).

These examples can be used to illustrate the general theorems. For example:

" Every group of linear vector operators contains at least one idempotent or one

nilpotenl expresssion."

The group b mg contains the idempotents

«S./3j(), /?S. ya(), a S. ,8 y ( ) + /3 S. y a
( ).

The group b pg contains only nilpotents.

" When an algebra contains an idempotent expression it may be assicmed as the

basis and tJie remaining expressions are then divisihle into four classes."

In b mg if we assume a 8. (3 y { ) as the idempotent then the units are, with

reference to the basis,

idemfaciend, idemfacient, a S. (3 y { ) ;

nilfaoiend, idemfacient, /? S. /? y ( ) ;

idemfaciend, nilfacient, a S. y a
( ), and a S. a f3 ()

;

nilfaciend, nilfacient, /? S. y a
( ), and /? S. « /3 ( ).

" The fourth class are subject to independent investigation."

"If the first class comprises any units except the basis, there is, besides the basis, another

idempotent expression or a nilpotent expression, and we may free the class from this, when

idempotent, by writing for the basis the difference between the two ; in this case expressions

may pass from idemfaciend to nilfaciend or from idemfacient to nilfacient, but not the

reverse." Thus, if we had taken for our basis in b mg « S. /? y ( ) + ^3 S. y «
( ) there

would have been only two classes,

1 : a S. /3 y ( ) + /? S. y a
( ) ;

(3 S. y a
{ ) ; a S. y a

{ ) ; f3 S. (3 y { ) ;

2 : aS.a(3(); ^ S. a /? ( ).

The second idempotent basis is easily seen to be (3 S. y a
{ ), and the diflerence

is a S. /3 y ( ), as before. And making this change of basis, f3S.y a
( ) and /S S. a /? ( )

become fourth class, /'? S. /? y ( ) becomes second class, a S. y a
( ) becomes third class.

" When there is no idempotent 6a.s'is, all expressions are nilpotent, and all porcers of

^ach expression that do not vanish are independent. We may take any expression as the
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hasi^, hat it is well lo select one n-hirh hua the mod powers thai do not vanish." Tlii:s in

bp, we. take l.^ S. ( ) A. Ill, — /j S. ( ) \. IJ.l^, whose siiuare is—/. y.( )A. /,/,/.,

tlu' cube vanishing. This ;ilgt'br;i is then of second order, if .4, 7/ are anv two

expression.s of it,

A' B + AB'+ A 11 A y B A B ^ o.

These examples are sui^iicient to show tlie use of these forms in interjireting tlie

subject. It remains only to show iiow thtv may be applied in a few eiises. Tiiere

are of cour.se -for every one of them two fields of api)licalion at once suggested by

this method of writing them, viz. : linear transformations and homogeneous strains.

E.g., the-nilpotent algebra d^. Tiie general expression of this algebra is

<p = x.l38.a(S()-^ a 8. ( y V y « + .- Y « /?) ( ).

This transforms /> = x, a -f y^ /3 -f z^ ; into

(p f) = xz^ /^ + "
( yyi + 22,)

= y.'/i « + 2i (2 « + a- ft)-

This maj' represent any point of the plane (ff, ft). Since the value of a'l does

not enter (j) p, every straight line parallel to a is made to correspond to a config-

nnition of the (a, ji) plane. Those lines parallel to a which cut the
( ft, y) plane

in a line parallel to /3, correspond to a series of configurations of the («, ft) plane

produced by slipping it along the direction a. The movement of a line which is

parallel to a along a line parallel to the line y, produces a series of expansions of

the (fl,
ft) plane from a point y y i^ as center. If both y, and 2, vary, subject

to a law, we have the configuration of tiie («, ft) plane

/' = yy\ « + / (:vi) (2 « + ^ ft)-

Again, consider the algebra a 3. Tlie general expression here, is

,^ = x(aS. i3y( ) + /?S.7a(
) + )'S. «/M) ) +2/(«S.y «() + /? S. a /?())

+ 3 n 8. a /J
( ),

= a S. (X V /3 y + 2/ V )• a + 3 V a /?) ( ) + /? 8. (x V / a + .V V G /3) ( )

+ ; 8. a: V a /3 ( )

p becomes (p p — n (j-Xi + y?/,'+ zz^) -\- ft (j-.Vi-f yzi) + xzi y.

This strain operator will convert p into any other vector a, for if

G = ^a -f ,/ /? -|- g y

we have at once from

(l> p = (7,

xxi+ yy,-\-zzi =i,

XZi =C.
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Whence

V — '/ 2,—

2 = i Z^^— : U, 2, — .Vi') — ? yi2i .

The exceptional cases are where z^^^O. That is, ^ can be so chosen as to con-

vert any vector into any other except those lying in the plane of (a, ft), which is

converted into itself, the line XjO being converted into itself. The cubic of ^ is

{<p— r)' = 0. We may write (p p^x p -{-
( yi/i + 22i) a -\- yz^ (i.

Hence the effect of any (p is to move the terminal point of p along its line

in either direction, and then slide this extremity along a plane parallel to ( «, fl )•

Thus the infinite number of strains, which belong to this infinite group of strains,

and that have the same :r, represent a group of shears. Space nor time permit a

fuller treatment of this interesting line of application of this algebra. The ap-

plication of the other algebras might similarly be deduced.

I may say in closing that the natural classification of these algebras referred

to by Professor Benjamin Peirce, who regarded his own classification as Linnean,

is pointed to by these representations of the algebras.

Illinois College, Dec. 23, 1895.

Variation of a Standard Thermometer. By C'HAi<. T. Knipp.

During the term just past I made a number of observations on a standard

thermometer. The problem that presented itself was to observe the variations in

a standard thermometer under given conditions, and the minimum limit of con-

(iitions that would produce the same.

Having a delicate cathetometer at hand, that reads directly to J^ and

accurately to y^^j of a mm., no hesitancy was felt in making the observations,

feeling assured that the slightest variations in the reading of the thermometer

could be detected.

The thermometer that was in question was one of (^ueen & t'o's standardized

thermometers of the centigrade scale, graduated in tenths over a range of 100

degrees. The bulb is cylindrical in form, thus having a maximum, or tending

towards a maximum surface and consequently increased sensitiveness.

The thermometer was tested and standardized by the above named company

(in the 10th of Octoljer. After standardizing it was put in ii lirass case lined with


