Note Relative to Peirce＇s＂Linear Assochative Algebra．＂James Byrsie Shaw，D．Sc．

1 have no doubt many readers of Benjamin Peirce＇s classic work have found som？difficulty in its perusal from the lack of examples of the algebras de－ veloperl．That such a completion of the work was intended is shown by＂${ }^{2}, \mathrm{p} .4$ ， and the last three lines of page 119．The following method of exemplifying the subject may be of use or help．It is in a succinct form thus：Every unit in an algebra of this book is an operator of a matrical kind upon a grount of what we may call vectors．The whole work is thus a treatise on groups of such operators． This explains its abstruseness．Now for all cases in which the ground consists of two or three or four vectors，the units can be represented by the linear vector operators of quaternions，or linear quaternion operators．The relative forms given by Mr．C．S．Peirce maty be immediately translated into such quaternion torms． Thus we may write，$\left(a, \beta, \gamma\right.$ ，heing vectors such that $\mathrm{S} . a \operatorname{\beta } \beta=1$ ，and $l_{1}, l_{2}, l_{3}, l_{4}$ ， being quaternions such that S．l_{1} A．$\left.l_{2} l_{3} l_{4}=1^{*}\right)$ ．

$$
\begin{aligned}
& \text { Algebra } a_{1}, \quad i=a S . \beta \gamma() . \\
& \text { " } \quad \mathrm{b}_{1}, \quad i=a \mathrm{~N} \cdot \gamma \mathrm{\gamma}(\mathrm{O} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } \quad b_{2}, \quad i=a 心 . \beta \gamma() ; j=a \mathrm{~S} \cdot \gamma a() \text {. } \\
& \text { " } \quad \mathrm{c}_{2}, \quad i=a 心 \cdot \gamma a()+\beta \text { S. } a \beta() ; j=a \mathrm{~S} \cdot \beta \gamma() \text {. } \\
& \text { " } \quad \mathrm{d}_{2}, \quad i=l_{1} \mathrm{~s} \text { () A. } l_{3} l_{4} l_{1} ; \quad j=l_{3} \mathrm{~S} \text {.() A. } l_{1} l_{2} l_{3} \text {. } \\
& \text { " } \quad \mathbf{a}_{3}, \quad i=a \mathbf{S} . \beta \gamma()+\beta \text { S. } \gamma a()+\gamma S . a \beta() ; j=a \mathbf{S} \cdot \gamma a()+\beta \text { S. } a \beta() \text {; } \\
& k=a \text { S. } a \beta \text { (). } \\
& \mathbf{a}^{\prime}{ }_{3}, i=a \mathrm{~S} \cdot \beta \gamma()+\beta \mathrm{S} \cdot \gamma a() ; \quad j=a \mathbf{S} \cdot \gamma a() ; \quad k=a \mathrm{~S} . a \beta() . \\
& \mathbf{a}^{\prime \prime}{ }_{3}, i=-l_{1} \mathrm{~S} \text {.()A. } l_{3} l_{4} l_{1}-l_{4} \text { S.()A. } l_{1} l_{2} l_{3} ; \quad j=-l_{1} \text { S. ()A. } l_{3} \\
& l_{4} l_{1} ; k=-l_{3} \mathrm{~s} \text {. () A. } l_{1} l_{2} l_{3} \text {. } \\
& \mathrm{b}_{3}, \quad i=-l_{1}, \mathrm{~S} \text {. () A. } l_{3} l_{4} l_{1}+l_{2} \mathrm{~S} \text {. () A. } l_{4} l_{1} l_{2}-l_{3} \mathrm{~S} \text {. () A. } l_{1} l_{2} l_{3} \text {; } \\
& j=l_{1} \mathrm{~S} \text {.() A. } l_{4} l_{1} l_{2}-l_{2} \mathrm{~S} \text {.()A. } l_{1} l_{2} l_{3} ; k=-l_{1} \mathrm{~S} \text {.().A. } l_{1} l_{2} l_{3} \text {. } \\
& \mathrm{b}_{3}{ }_{3}, i=-l_{1} \mathrm{~S} \text { () A. } l_{3} l_{1} l_{1}+l_{2} \mathrm{~s} \text {. () A. } l_{1} l_{1} l_{2} ; j=l_{1} \mathrm{~S} \text {. () A. } l_{1} l_{1} l_{2} \text {; } \\
& k=-b_{3} l_{1} \mathrm{~S} . \text { () A. } l_{1} l_{2} l_{3}+l_{4} \mathrm{~S} \text {. () A. } l_{4} l_{1} l_{2} \text {. } \\
& \text { " } \quad \mathrm{c}_{3}, \quad i=-l_{1} \mathrm{~S} .() \mathrm{A} . l_{3} l_{1} l_{1}+l_{2} \mathrm{~S} .() \mathrm{A} . l_{1} l_{1} l_{2} ; j=l_{1} \mathrm{~S} .() \mathrm{A} . l_{1} l_{1} l_{2} \text {; } \\
& k=-a l_{1} \mathrm{~S} .(1) \mathrm{A} . l_{3} l_{4} l_{1}-l_{1} \mathrm{~S} .() \mathrm{A} . l_{1} l_{2} l_{3}+l_{4} \mathrm{~S} \text { () (). } l_{1} l_{1} l_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } \mathrm{e}_{3}, \quad i=-l_{1} \mathrm{~S} .() \mathrm{A} . l_{1} l_{2} l_{3} ; j--l_{1} \mathrm{~S} .() \mathrm{A} . l_{1} l_{4} l_{1}+l_{3} \text { S. ()A. } l_{1} l_{2} l_{3} \text {; } \\
& k=l_{1} \mathrm{~S} \text {. () A. } l_{1} l_{1} l_{2}-l_{2} \mathrm{~S} \cdot \text { () A. } l_{1} l_{2} l_{3} \text {. }
\end{aligned}
$$

[^0]Algebra $\mathrm{g}_{4}, i=a \mathrm{~S} \cdot \beta \gamma(1 ; j=a \mathrm{~S} \cdot \gamma a() ; k=\beta \mathrm{S} \cdot \beta \gamma() ; \quad l=\beta \mathrm{S} . \gamma a()$ ．
＂bp $p_{5}, i=l_{2}$ S．（）A．$l_{4} l_{1} l_{2}-l_{3}$ S．（）A．$l_{1} l_{2} l_{3} ; j=-l_{2}$ S．（）A．$l_{1} l_{2} l_{3}$ ； $k=-l_{1} \mathrm{~S}$. （）A．$l_{3} l_{4} l_{1}-l_{3}$ S．l）A．$l_{1} l_{-} l_{3} ; l=l_{1}$ S．（）A．$l_{1} l_{1} l_{2}$ ； $m=-l_{1}$ S．（）A．$l_{1} l_{2} l_{3}$ ．
＂

$$
\begin{aligned}
& \mathrm{bk}_{6}, i=l_{1} \text { s. () A. } l_{2} l_{3} l_{4}-l_{2} \text { 今.() A. } l_{3} l_{4} l_{1}+l_{3} \text { S.()A. } l_{4} l_{1} l_{2} ; j=- \\
& l_{1} \text { S. () A. } l_{3} l_{1} l_{1}+l_{2} \text { S. () A. } l_{4} l_{1} l_{2} ; h=l_{1} \mathrm{~S} \text {. () A. } l_{4} l_{1} l_{2} \text {; } \\
& l=-l_{3} \text { S. () A. } l_{1} l_{2} l_{3} ; m=-l_{2} \text { S.()A. } l_{1} l_{2} l_{3} ; n=-l_{1} \mathrm{~S} \text {. } \\
& \text { () A. } l_{1} l_{2} l_{3} \text {. } \\
& \mathrm{bm}_{6}, i=a s \beta \gamma() ; j=a s, \gamma(1) ; k=a \mathrm{~s} . a \beta() ; l=\beta \mathrm{s} . \beta \gamma() ; m= \\
& \text { 及ん. } \gamma \text { а () ; } n=\beta \text { 心. } a \beta \text { () } \text { 。 }
\end{aligned}
$$

These examples can be used to illustrate the general theorems．For example：
＂Every group of linear vector operators contains at least one idempotent or one nilpotent expresssion．＂

The group $\mathrm{b} \mathrm{m}_{6}$ contains the idempotents

$$
a 太 \beta \gamma(), \beta \text { S. } \gamma a(), a 心 \beta \gamma()+\beta \text { S. } \gamma a() \text {. }
$$

The group b p_{5} contains only nilpotents．
＂When an alyebra coutcins an idempotent expression it may he assumed as the basis and the remaining expressions are then divisible into four classes．＂

In $b m_{6}$ if we assume $a s \beta \gamma()$ as the idempotent then the units are，with reference to the basis，
idemfaciend，idemfacient，$a S, \beta \gamma()$ ；
milfaciend，idemfacient，$\quad \beta$ ぶ．$\beta \gamma()$ ；
idemiaciend，nilfacient，$\quad \alpha \mathrm{S} . \gamma \operatorname{a}()$ ，and $a \mathrm{~S} . a \beta$（）；
nilfaciend，nilfacient，$\quad \beta \mathrm{S} . \gamma$（），and $\beta \mathrm{S} . a \beta$（）．
＂The fourth class ure subject to indrpendent investigation．＂
＂If the first cluss comprises any units except the basis，there is，besides the basis，another idemputent expression or a nilpotent ixpression，and we may free the cluss from this，when idempotent，by writing for the basis the difference between the two ；in this casce expressions muy puss from idemfaciend to nilfaciend or from idemfacient to nilfacient．but not the rererse．＂Thus，if we had taken for our basis in $\mathrm{bm}_{6} a S \beta \gamma()+\beta$ s．γ a（）there would have been only two classes，

```
1: aS. \beta\gamma() + \betaS. \gammaa(); \betaS. \gammaa(); aS. \gammaa(); \betaS.\beta\gamma();
2: aS.a\beta(); \betaSa\beta().
```

The second idempotent basis is easily seen to be β S．γ a（ ），and the difference is $a \mathrm{~S} .3 \gamma()$ ，as before．And making this change of basis，β S．$\gamma, a()$ and $\left.\beta \mathrm{S}, \beta_{\text {O }}\right)$ become fourth class，β S．$\beta \gamma()$ becomes second class，$a S . \gamma a()$ becomes third class．
＂When there is n n idempotent basis，all expressions are nilpotent，and all pourers of each expression that do not canish are independent．We may take any expression as the

Thusis，but it is well to select one which has the most powers that do not ranisht．＂Thus in
 the cube vanishing．Thisalgehra is then of second order．li A, l ，are any two expressions of it，

$$
A^{2} B: .1 B^{2}, 1 B .1 \quad l B B=0 .
$$

These examples are suficient to show the nee of these forms in interpreting the subject．It remains only to show how they may be applied in a few casco．There are of course for every one of them two fiflels of application at once suggented hy this method of writing them，viz．：linear transiormations and homogeneons strains． E．g．，the nilpotent algebra d_{3} ．The gencral expression of this algebra is

$$
\begin{aligned}
& \phi=x \beta \text { Na, } \beta()+a N\left(y V^{\gamma} \gamma+z V^{v} a \beta\right)() . \\
& \text { This trausorms } \left.p=x_{1} a+y_{1} \beta+z_{1}\right\rangle \text { into } \\
& \qquad \rho=x z_{1} \beta+a\left(y y_{1}+z z_{1}\right) \\
& =y y_{1} a+z_{1}(z a+x, \beta) .
\end{aligned}
$$

This may represent any point of the plane (a, β) ．Since the value of x_{1} does not enter $\phi \rho$ ，every straight line parallel to a is made to correnpond to a contig－ uration of the (a, β) plane．Those lines parallel to＂which eut the (β, γ) plane in a line parallel to β ，correspond to a series of configurations of the（ α, β ）plane produced by slipping it along the direction a ．The movement of a line wheh is parallel to a along a tine parallel to the line γ ，produces a series of expansions of the (a, β) plane from a point $y y_{1} a$ as center．If both y_{1} and z_{1} rary，subject to a law，we have the configuration of the（ n, β ）plane

$$
\phi \rho=y y_{1} a+f\left(y_{1}\right)(z a+s \beta) .
$$

Again，consider the algehra a_{3} ．The general expression here，is

$$
\begin{aligned}
& \phi=x(a S \cdot \beta \gamma()+\beta S \gamma a()+\gamma 心 a \beta())+y(a S \cdot \gamma a()+\beta S a \beta()) \\
& +z a 心 \alpha \beta(),
\end{aligned}
$$

$$
\begin{aligned}
& \text { +うか. } x \text { Vaß() } \\
& \rho \text { beeomes } \phi p=a\left(x x_{1}+y y_{1}+z z_{1}\right)+\beta\left(r y_{1}+y z_{1}\right)+x z_{1} \gamma .
\end{aligned}
$$

This strain operator will convert ρ into any other vector σ ，for if

$$
\sigma=\xi a+\eta \beta+\zeta \gamma
$$

we have at once from

$$
\begin{aligned}
& \phi \rho=\sigma, \\
& x x_{1}+y y_{1}+z z_{1}=\zeta, \\
& x y_{1}+y z_{1}=\eta, \\
& x z_{1}=\zeta .
\end{aligned}
$$

Whence

$$
\begin{aligned}
& x-5 / z_{1} \\
& y=\frac{y z_{1}-\Sigma y_{1}}{z_{1}^{2}} \\
& z=\Sigma z_{1}^{2}-5\left(x_{1} z_{1}-\frac{\left.y_{1}^{2}\right)-\eta y_{1} z_{1}}{z_{1}^{3}}\right.
\end{aligned}
$$

The exceptional cases are where $z_{1}=0$. That is, ϕ can be so chosen as to convert any vector into any other except those lying in the plane of (a, β), which is converted into itself, the line $x_{1} a$ being converted into itself. The cubic of ϕ is $(\phi-x)^{3}=0$. We may write $\phi \rho=x \rho+\left(y y_{1}+z z_{1}\right) a+y z_{1} \beta$.

Hence the effect of any ϕ is to move the terminal point of ρ along its line in either direction, and then slide this extremity along a plane parallel to (α, β). Thus the infinite number of strains, which belong to this infinite group of strains, and that have the same x, represent a group of shears. Space nor time permit a fuller treatment of this interesting line of application of this algebra. The application of the other algebras might similarly be deduced.

I may say in closing that the natural classification of these algebras referred to by Professor Benjamin Peirce, who regarded his own classification as Linnean, is pointed to by these representations of the algebras.

Illinois College, Dec. 23, 1895.

Variation of a Standard Thermometer. By Chas. T. Knipr.
During the term just past I made a number of observations on a standard thermometer. The problem that presented itself was to observe the variations in a standard thermometer under given conditions, and the minimum limit of conditions that would produce the same.

Having a delicate cathetometer at haud, that reads directly to $\frac{1}{60}$ and accurately to $\frac{1}{100}$ of a mm., no hesitancy was felt in making the observations, feeling assured that the slightest variations in the reading of the thermoneter could be detected.

The thermometer that was in question was one of queen \& l'o's standardized thermometers of the centigrade scale, graduated in tenths over a range of 100 degrees. The bulb is cylindrical in form, thas having a maximom, or teuding tuwards a maximum surface and consednently increased sensitiveness.

The thermometer was tested and standardized by the above named (a)mpany on the 10 th of October. After standardi\%ing it was put in a brass case lined with

[^0]: ＊）A．$l_{2} l_{3} l_{4}=\mathrm{S} \cdot \mathrm{V} l_{2} \vee l_{3} \backslash l_{4}-V l_{2} \cdot \mathrm{~V} \cdot \mathrm{~V} l_{3} \mathrm{~V} l_{4}-V l_{3} \cdot \mathrm{~V} \cdot \mathrm{~V} l_{4} \mathrm{~V} l_{2}-\mathrm{V} l_{1} \mathrm{~V} \cdot \mathrm{~V} l_{2} \vee l_{3}$.
 S．l_{1} A $\cdot l_{2} l_{3} l_{4}=-S \cdot l_{2} A \cdot l_{3} l_{4} l_{1} \quad \& \cdot l_{3} \cdot$ I $\cdot l_{1} l_{1} l_{2}=-S l_{1}$ A．$l_{1} l_{2} l_{3}$ ．

