From this expression the following table has been computed for a 3 -inch shaft running at 100 and 250 revolutions per minute:

Hiameter of shaft in inches.	Revolution: per minute.	Percentage of loss when length in feet.				
		$1(x)$	$\cdots 10$	400	$3(x)$	1600
3	1(4)	$\therefore .1$	9.9	19.6	38.7	π
3	230	5.9	110.6	20	39	$7 \% 1 / 2$

It is worthy of remark that in long lines of shafting the influence of belt pull on the bearings is rery slight compared to the weight of shaft and pulleys, so that the loss in fiction is but little more than that due to weight alone.

With better alignment and better lubrication the loss will be less than that here given; in long continuous lines of shafting the bearings are always more or less out of line, and for this reason the loss will be less if short lengths be emplored.

Orthognal strfacer. By A. ́. Hathatiay.

It is well known that a given sstem of surtaces $f(x, y, z)=c$ has in general no pair of orthogonal conjugate systems, i. e., anch that the suriaces of the three systems throngh any point are mutually orthogonal at that point. It has been shown by Cayley [Salmon's Three Dimensions. p. 4ti] that $f(x, y, z)$ wust satisfy a differential equation of third order if it poreses a pair of orthogonal conjugates. In the course of some recent invertigations on thith motion I was led to ubserve that a giveu system of surface- might have two pairs of orthogonal conjngates, in which case it would hare an infinite number of such pairs. In order that such may be the case $f(x, y, z)$ must satisfy a differential equation of second order which is a particular integral of Cayley's equation of third order. This differntial equation is, in Cayley's notation.

$$
\begin{aligned}
& {\left[\left(a . b, c \cdot f \cdot g, h_{1}(L, M, N \cdot 2-a+b-c) \cdot L^{2} \perp M^{2}-N^{2}\right)\right]^{2}} \\
& =4\left(L^{2}+M^{2}+N^{2}\right)\left(A, B, C, F \cdot G . H .(L, M, N)^{2}\right.
\end{aligned}
$$

where $L, M, N, a, b, c, f, g, h$, are the first and second differential coefficients of $f(x, y, z)$, and A, B, C, etc., are the minors uit a, b, c, etc., in the matrix

A reay general solution of this equation comes from $a=b=e, j=y=h$ $=o$, which are the differential equation of the series of spheres that pass through a given fixed circle, including, ats particular cases, eoncentrie spheres, planes intersecting in a fixed line, and parallel planes.

It may be show that the above equation factors into four factors of the form $1 b^{1}-c^{1} L^{1}=1 \overline{c^{1}-a^{1}} M^{1}=1 a^{1}-b^{1} N^{1}$ where a^{1}, b^{1}, c^{1}, are the roots of the cubic foumd by replacing a, b, c in the above matrix by $a-x, b-x, c-x$. The differential equation may also, by the usual reciprocal transformation $\mathrm{X}=L, I=M, Z=\Lambda$, $U+u=L x+M y+N z$, be reduced to a simpler form.

The preceding differential equation and the resulting theory of orthogonal surfaces were obtained by quaternion analysis. Brietly, if $;, i 6$, are two perpendiculars to the surface normal 6 , that are also surface normals, then we have,

We may replace (3) by

Thus ϕ is the self conjugate linear vector innction, whose matrix is given above. From (1) and (3^{1}) we find

$$
V i \operatorname{Vo\phi } V \sigma \gamma=0
$$

This determines λ as one (and $\lambda \sigma$ as the other of the two latent directions of the phane self-conjugate rector function $V \sigma \sigma \sigma \sigma$. There is therefore in general but one pair of normals that may satisiy the conditions of which (\because) becomes a condition upon σ, or the differential equation satisfied by $f(x, y, z)$ in order that it may possess a pair of orthogonal conjugates. lf, however, the above plane rector function have equal latent roots, then its latent directions become indeterminate. This means that (1) becomes a fictor of (3^{1}) so that the only equations to be satisfied are (I), (2). These may be satisfied without other condition uron σ than the above equality of latent roots which is the differential eqnation that we have given at the begiming of the paper.

Note.-Since presenting the above I have noticed that the latent ronts of the plane strain mentioned are proportionals to the principal radii of cursature of normal sections of the surface $f x, y, z=c$. The above differential equation of second order therefore expresses that every point of each of these surfaces is an umbilic. Hence the gencral solution consists of a system of spheres (or planes) with one variable parameter. $u=t, x, y, z$. The above quaternion method gives also the conlitions that a system of lines may be the intersection of one pair of orthogomal srstems of surfaces, or of an infinite mumber of such pairs.

