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As an illustration, consider the integral

:

Jf (x, y) dx.

y= ^/[(i-—a) + -/a ( / — a)] {r— ia).

Here we have

:

(1.) J\= y' - 2y, (r-a)(.r-2a )+ (.,—«)(.,—2a)'=o,

and this curve has a triple

point at (2a, o). Taking A at

this point, and

(2.) y^^OfX— 2a=

as the equations of lines

through A, we are to solve for

the intersections of f\ = o,

and the line :

(3.) y + l{x-2a)=o.

Since three solutions are

known, we readily find :

(7.) X (/,/.) = ..(/.

(8.)

1) 2 — o(2/^ — 2A--1)

0(2/4— 2/2 + 1).

{A2_l)

(9.) y =— A ( X— 2 a) =— a'A (2a= ~ 1

)

(/.2_1,2

If the curve )fn^=o, instead of having a multiple point of order {n—1), has

J (n— 1) {n— 2) double points, that is, if its deficiency is zero, then it is a uni-

cursal curve, and hence .» and y can be expressed rationally in terms of a single

parameter, and hence the reduction can be performed.

Alternate Processes. By Professor Arthur S. Hathaway.

I. introduction.

1. The alternate (and symmetric) procesess that we develop seem valuable

from their simplicity and power, and their general applicability in all depart-

ments of mathematics. They may be employed in any algebra in which addition

is associative and commutative without regard to the laws of multiplication.
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2. The notation is a doubly dual one, i. e., from a given theorem and proof

a dual theorem and proof may be derived by correspondence, and each of these

has its dual by another correspondence, so that every theorem is of four-fold in-

terpretation.

3. As illustrative applications we have taken the extensions, to n-fold

algebra, of Green's theorem connecting integration through a space with integration

over the boundary of that space (the laws of multiplication undetermined) ; the

theory of determinants in any algebra
;
quaternions, and four-fold space.

4. The alternate processes lead in quaternions to formulas that are almost

identical with those of Prof. Shaw's " A Processes," and the two notations are

readily convertible. The advantages of our notation are that it pertains to a

general theory and that its developments are easy and natural rather than arbi-

trary and labored.

II. DEFINITIONS.

5. We consider a function, o{p^, p^, . . . . pn ), of 7i variables, and substitu-

tions, .«, s/, etc., that permute these variables among themselves.

(1. We let (x) stand for the assemblage («,, s.,, . . . sm), (s^), stand for {a/,

S2^, • -^m), and (/)= («) (./), stand for (<i, l-,, . . . tmm' ), where tu>i=r s^r',r^

1, 2, . . m, r'= 1, 2, . . . m^, and u =7// (/•— 1) + i-', say.

7. We further denote, by + s, the substitution .s, with the factor 1 or— I,

according as a involves an even or an odd number of transpositions, and by c(«),

the fraction which is the ratio of the excess of the number of positive over the

number of negative substitutions in (s)'to the whole number of substitutions in (s).

When (.s) forms a "group" we have e(,) = 1, — 1, or 0, the latter value in all

cases where the group contains both positive and negative substitutions.

8. We denote l)y ^4(0), the alternate process, - - Sr. This process per-
"' r=I

formed on any operand 6 before which it is placed, gives as a result a sum of

terms, - Ji '^«/-, divided by the number of terms in the sum, where o»r is the

function <? with its variables rearranged by the substitution Sr.

9. When (s) includes all substitutions of the n variables, so that m=
j

n, the

corresponding j)rocess is denoted by .4. W^hen a process pertains to the group

of m substitution of m given variables (wi not:= n), it is denoted by A with the

affected variables correspondingly marked.

10. A function o is alternate ni< to (.s) when +_Sr '9^=*^, ^^ 1, '^, • '"•

11. A function o is alternate as to (s) for the arrangements (/) when every OjV' is

alternate as to (s).
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12. We distinguish between *> •
<f>z=z(f)i,,. and • s,- <t>; viz., the latter function

involves the symbol s,- which is a function of the variables so that a substitution

on the variables of ' •--,•», which have the same order as in o, is not equal to the

same substitution on <j>xr • In fact s ' f^ r 9=^>^ r 'i>s ^=s , s ' (p

.

13. We have also symmetric processes, C{s), symmetric junctions as to (s), etc.,

whose definitions are obtained by replacing +_ s,. by s,. in the above definitions.

There is a dualty between " alternate " and " symmetric " which consists in the

interchange of corresponding terms. The fraction e{s) is in general its own dual.

14. There is also a dual interpretation of the substitution s, viz., write for the

moment <p (p,, p,, ' ' Ph ) = 9 i' 9' ' " where we have the number of a " varia-

ble," and beneath it, the number of its "place" in <P. Ordinary substitutions

affect the upper line of numbers only, i. e., the "variables." The same substitu-

tions on the lower line of numbers only are " place" substitutions. The substitu-

tion s that affects the given number 1, 2, . . . n may be marked s or s according as

it affects variable or place numbers. The dualty arises from these two interpre-

tations of the substitutions of any process. When the variables of the operand

that are affected by s occupy the places corresponding to their numbers, we

have s^s-', and the processes J. («), A{»i) give the same result provided (.s) is a

substitution group. If, however, the above arrangement of the variables be

affected by a substitution /, and the result taken as operand, we have s^/ .s-^ *''-',

so that the two processes A, A to the same group (s) are in general different, the

latter being equivalent to the former to a group that is similar to (s) only.

III. THEOREMS.

[The proofs are too elementary to need insertion.]

Theor. 1. If (j> be alternate [or i^ymmetric) as to (s), then is A{t) ^ =:: f {or e{s) <?).

Theor. 2. If (<) = (s) {&'), then is A{t) i>
= A(s) A{8') •

<!> = A(s') • A{a) <t>.

Note.—This result shows that the product of two alternate processes is an

alternate process, and that a process {A{t) may be expended in terms of a given

minor process ( A(s) ).

E. g., A -p qr^} (p Aq r— q A p r -^ r A p q), A • p q r s := ^ (A p q • A r s +
Ar s • A p q — A p r ' A q .'i — A q s ' A p r -\- A p s ' A q r -\- A q r A p s), etc.

These are place expansions. Variable expansions give different results,

e •

(J ., A p q r =: ^^ A ip q r— qp r-^ q r p)

=^ ^ ip A q r— A q p r -{- A q r • p). See art. 16.

Cor. 1. A(t) ' 9 = A{s') 9 {or e(g) • A{g') 0, ivhen 9 is alternate {or .symmetric) as

to (s) for the arrangemints (s').
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Note.—If (s) be a group this condition means practically for all the arrange-

ments of (t).

Cor. 2. A(t) • 6= A(s) <f>
(or e(«') 6) when o is alternate (or symmetric) as to (/).

Theor. 3. If (s) be a group, then A(s) 9 is «" alternate function of the group (s)

for all arrangements of the variables.

Note.

—

A{i,) o is an alternate function of the group (s) only for those ar-

rangements -s .... that satisfy s (s) = (.s) s. These include the group (s).

Theor. 4. If (s) be a group, and (.s') be any assemblage contained in (s), then,

A(s) o = A{„) • A{g') = A(t) A(s') . .

15. These are the principal theorems of the subject. We note some im-

portant special cases where the processes are those that pertain to all the substitu-

tions of given numbers (variables or places).

16. Let A' affect m' given numbers, let A^^ affect ?«" other given numbers,

and so on. Then A^ .\" ... is a process who.se factors are commutative and

whose substitutions form a group (s), consisting of substitutions that permute

each set of variables (or the variables in each set of places) among themselves.

One complementary assemblage (./), such that (s) {s') forms the complete group

of n_ substitutions then consists of the substitutions that leave each set of variables

(or the variables in each set of places) in their original order among themselves.

Anv element .<?' ,' of this assemblage may be replaced by any product s,- .-''
r' with-

out charging the assemblage as' a complement of (.s).

We then have from th. 2.

Theor. 2\
Iwi' \m"

A 6 — vl(V) • A' A" . . .<if= l~ " ^^'r A' A" . . .0.

In this expansion of A o in terms of minor ^l'*. all terms may be made posi-

tive by replacing every negative s' r' by its product by a transposition of («).

(a). A o = A{s' 9 (or 0) when o is alternate (or symmetric) as to (s) Jor all ar-

rangements of the variables.

J^^ote.— In particular, if o be symmetric as to certain variable.'^ (or places) for all

arrangements of the variables, then A o = 0.

(6). A o z=z A' A" . . . (or €(«') • A' A" . . . 9) when is alternate (or sym-

metric) as to (s').

IV. LINEAR ALTERNATES.

17. A function op is said to be linear when o (}' p -\- y q) =^ x 9 p {- y 9 (j,

where x, y are ordinary numbers (scalars).

18. A function (Pi, p,, . . . pni ) is a linear alternate of m^^' order, when it is

linear as to each of its variables, and the interchange of any two variables changes

its sign.
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Theor. 5. *1 linear alternate vanishes when one variable is zero, or two variables are

equal. It is unaltered by adding to any variable any sum of scalar multiples of the

remaining variables. It vanishes when two or more of its variables are linearly dependent

—in particular, when the order of the alternate is greater than the order of the algebra.

19. It is easily seen that in an algebra of n^^^ order the general linear al-

ternate of »/*'* order is a sum of algebraic multiples of | »_ \m_
|

t-»' independent

scalar alternates of m^*^'' order.

20. If '/> {pi, P2, . . . p"*) be a linear function of m^*^ order, then by th 3 and

note, A o and A " are linear alternates of that order. Also we have more

constants than we need (w") in order to make either of these the most geneial

linear alternate of «/*^ order; in fact we have more than enough constants to

make also ' Co or C ' o the most general linear symmetric of Jw''*'' order.

21. In the use of Ais) it is not only well to note that it is a linear symbol,

but also that it is commutative with any constant linear symbol, V, of one variable

(such as <S', V, K, in quaternions). In applying ,4, however, to a function © we

can not reduce the value of o by reason of any special values of the variables i, e,

if for special values of the variables we have = '/, we do not therefore have

A<p = f.

22. In any algebra of 71^*'' order, we may take the units tj, i.,, . . in as

the numbers of n independent directions of unit length (not necessary rectangu-

lar). Also, any number p =: x^ ij -j- .r., io -{' . • ~r~ -''n in where x^, j-.,> . -Vn
,

are ordinary numbers) may be taken as the number of a line whose components,

according to the parallelogram law of addition, arej] I'j , x^, I2, • • 'n in. Taking a

fixed origin 0, any point P has a definite co-ordinate p, the number of the line

P. Any number of independent lines have two orders of arrangement such

that the interchange of two lines changes the order of arrangement. A change of

order in the argument lines of an alternate therefore changes its sign.

28. Consider an m-space bounded by the tangential paths of m independent

differentials rfi p, rf_, p, . . . dm p. This space may be taken so small as to be ap-

proximately an m-parallelogram whose r^^ pair of opposite faces intersect the

lines of d,- p and contain the remaining lines through the points of these faces.

By (/• — 1) interchanges the "r'*^"" order dr p, d
^ p, . . d,-—

^ p, d,- + 1 p, . . d,„ p
becomes the "2'*'^" order d^ p, . . dm p. These interchanges may be made so as to

leave d,- p first. At the initial "/•*''" face dr p is inward, and we have r inter-

changes from the r'^^ order in the differentials exclusive of d,- p to bring the /•'"'

order to the first order, say d\ p, d^,- p, d^m p, wher d^i p^=— d,- p is outward.
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24. If o {p, dj p, d, p, . . . dr—i p, dr-r 1 p, . . . d)n p) =o,-,be any function

of p, that is linear in the diflferentials, then if d,- denote differentiation corre-

sponding to dr p, while A affects the subscripts of the differential symbols that

follow it, we have for integration through the m space,

'»i - 1
(— 1) ('(/,•• .4 ©r = ( A o {p, d'o p, d'm p)

over the )'*'' pair of faces, where d\ pz=z^^drp i» outward at each face. Thus

summing for every pair of faces and noting that, by th 2\ 2 (— l)'-i dr A (b,- = m
A . di {p, d., p, dg p, . . dm p), we have the following theorem connecting inte-

gration through any m-space with integration over the (m-1) boundary of that

space

:

Theor. 7. /'"'
i j . , • , .ml ^4 . a, u (p, do p, d^ p, . . . d,„ p)

= j
'"

'^ o {p, d'., p, d's p, . . . (/',„ p).

2o. The elements d^ p, . . . d,„ p are in the same order of arrangement

througliout the integration ; and at the boundary rf', p, . . d'm P are in the same

order, with rf', p outward.

Any space may be divided into these small finite spaces by the differential

lines and the contril)Utions to tiie boundary integral made by intermediate faces

cancel each other, except where the value of o is different on two sides of the

same face at the same point of it. In this case such intermediate boundary must

be retained in cf)niputing the boundary integral.

V. ALTERNATE PRODUCTS.

26. Let o (p^, p,, . . . p„ ) =o, p, . o., p^ o„ p„ .

We then have

:

'i Pi, ""s Pi, • • • ®"Pl
_"_ A . <j> =

^1 Pz "^a, P-, • • • '^np.

<Pi p„ ©2 p„ ... o„ p„

27. This determinant is multiplied out by ordinary rules, except that since

the factors may not be commutative, or even associative, each product must appear

in the order and association given by o. The expansions of Theor. 2' are then

expansions of this determinant in terms of its minors either by rows or columns,

according as we employ place or variable substitutions.

28. When two factors of the product
<t>

are commutative, for all arrange-

ments of the variables, such factors are also commutative in A <f>.
The inter-

change of the corresponding functional symbols alone has, therefore, the same
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effect in changing the sign of A o as the interchange of the variables alone.

Hence when all the factors are commutative, the A may operate either on the

variables or on the functional symbols, and since A o is linear in the latter, it has

the properties of linear alternates with respect to the functional symbols. If the

functional symbols be linear, the alternate A <? is also linear with respect to the

variables.

VI. QUATERNIONS.

29. We consider linear alternate products whose functional symbols are 1, S,

V, K. The symbol Ogives a factor that is commutative with any other factor, so

that any other symbol in the same product with S may be reduced by + n S,

where n is a scalar.

30. By substituting 1 ^ S -\~ V, K= S — V and expanding, our linear

alternate product of any order is found to depend on two in which the symbols

are either all For one S and the rest V. Two S symbols give an alternate pro-

duct that is identically zero (Theor. 2, note). It appears that: the two of second

order are vectors ; the two of third order are a scalar and a vector ; one of the

fourth order is zero, the\)ther is a scalar. Any linear alternate of fifth or higher

order is identically zero.

31. In the geometrical interpretation in which I, i,j, k are the numbers of

four mutually perpendicular unit lines in four-fold space, the condition of per-

pendicularity of p, (J
is S .p K (I

= := S . K p . 7, i e., p K (j= — 7 K p, Kp . 7

= — K (j . p. Thus in any alternate product whose functional symbols are alter-

nately I, A" and whose variables occur in sets, such that any two of different sets

are perpendicular, we have

.1 — A' A''. . . 9,

where A^ A" are alternate symbols that affect the different sets of variables \_th 2'

(b), art. 16.] In particular, if all the variables are mutuallj perpendicular, then

A' z= 1, A"— i, and A 9= 9-

32. The alternates of second order are :

(a). A.Vp.Vq=V. Vp. Vq= Li+jM + N k.

(b). 2A.Sp.Vq. = 2A.Sp.q= Ai+ Bj4-Ck.

A, B, C, L, M, N are the six independent scalar linear alter-

nates of second order, and are the coefficients of o (1, i),

(l,j), o (1, k), 9 {j, k),
<l>

{k, i), fi {i,j), in the expansion of

any linear alternate o {p, q).
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So. We have further :

(a). A.pq = A.V.pq^A. Vp .Vfj^ ^\ Vp Vtj ^= A. Kp. Kg.

(b). A . p K(j = ]'. p Kq = — 2 A . Sp . q — A . pq .

(c). A. Kp.q = V. Kp.q = 2A.Sp.(i — A.pq.

Note.—These and similar formulas are useful in computing alternates of

higher order. Thus a factor p</ of a product may be replaced by A. pg [th 4] or

any of its equivalent values in (a) with or without the partial A.

34. Resolve 7 into </ + q" respectively parallel and perpendicular to p.

Then A , pKq=z A . p Kq" ^p . Kq"
[</( 6, art 31

j ]. Its tensor is therefore base X
allitiifh of parallelogram on 7, p, as sides. We call A . p K q the rector area of the

parallelogram {q, p). It gives plane, direction and tensor, by the plane, direction

of turn, and tensor of the vector. Observe that .1 -pq^ V- V p Vq is perpen-

dicular to the three-space (i, Vp, V q) =^ (i, p. q ).

35. The alternates of third order are

:

(a). A. Vp. Vq.Vr= A. A. V'p. I'-/. 1'^= J. S. V p. Vq Vr=z

SVp. Vq. V r. We call this scalar — a.

(b). 3 .1 . Sp.<ir:=3 A.Sp.VqT= bi-^ci-\dk.

The four independent scalar alternates of third order are a, b, c, d, respec-

tively the coefficients of o (1, j, A), 9 (1, /, k), o (1, k; i ) o {1, i, J) in the expansion

of any linear alternate (p, q, rV

.36. We have further :

(a). A.pqr^A. Vp.qr+A.Sp.qr
(b). S. A. p({r= S.V]).y(\.y r= S.p A qr= S A . p A qr=

\ S( p A qr— q A r p ~ r A p (/) etc.

(c). ]'
. A . p q r^ A . S . p . q 1= — A . p . S q . r etc., =
;\ V . { p . A qr->- q A rp 4- r A p q) etc.

(d I. A . p . K q . r =r — S . A p q r = 3 . V . .\ p q r

(e). A. Kp.q. Kr=— K A.p. Kq . r = 8 A . pq r — 3 V . A jiq r

= S.pAqr — 3A.Sp.Aqr.

Note.—This alternate is Shaw's A . p(| r, and his formulas hold in the present

notation with this value of his .i.pqr. In the present notation a function that

is used as a variable must l)e enclosed in brackets. Thus A [S p] (j
—- 0, where the

A' follows the p, but A . Sp . q is not zero. Similarly, Shaw's value oi A . pq. A r xt

becomes .1 . Kp . q . K[A . Kr . S. Kt] — (i A . r . Sp s . Sq t.

37. Resolve r into ;-' + r" respectively parallel and perpendicular to the

plane of p, q, and then A . p. Kq . r= (.4 . p . A'</) . r", whose tensor is bate X alti-

tude of the parallelepiped on p, 7, ) as edges. We call this the quaternion volume

of parallelopiped. It will be shown that this is a line perpendicular to the edges
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•of the parallelopiped in the relative direction of 1 to t, ,/, A. We have A . p . K q . 1

=— 3 Ap q. Also A . Kp . q . K r is the quaternion volume of the parallelopiped

(Kp,Kq,Kr.)

38. The alternates of fourth order are :

(a). A . Vp . V q . V r . Vs . =0, since it is its own conjugate and is

in form the vector A . Vp . S. Vq . Vr . Vs.

(b). 4A.Sp. VqVrVs= 4A.Sp.S.Vq.Vr.Vs=— D,dscsi\&r.

D is the coefficient of o (J, i, j, k) in any linear alternate

'^ (Pj '/> >"> *)• -A^ll our alternates of fourth order are scalars,

zero when they can be shown formally as vectors.

39. We have further:

(aj. ^ A . p q r s:=: A . Sp . T'. q r s^ A . Vp S . q r h , etc.

(b.) S.p. A . Kq . r Ks= 4 A. Sp . S, q A . r s

=— 4A. Vp. V. q Ar!<= 4 A . Sp. VpVq. Vs. etc.,

^=^A,S.p.Kq.i.K8^=A.p.Kq.r.Ks, etc.

Note.—The first equation of (b) follows from 36 e, thus: A . Kq. r . A's=
S. q A rs— (Sq . A rs—S';-

. A . q s-r- S.<t . A . q ;), and operating by-S'. p we find (b).

Note.—From ( b), .V . .- . 1 . Kp . q K i=—

V

. g KA p . Kq . r is an alternate of

fourth order; it therefore vanishes when s = p. q, or r, — in other words -4 p. Kq.r

is perpendicular to the lines p, 7, ;•. To find the order in space make p, 7, r=
i, j, k, whence A . p . Kq . r^^i . Kj . k^l.

(c). S. KpA . q . Kr . s=— S.pA . Kq . rKs~T>=A. Kp. 7

Kr.s, etc.

40. Resolve p into p' —p" respectively in and perpendicular to the space

<y, r, .<, thus

:

A . Kp . 7 . K r . s^^ Kp". A q Kr %

whose tensor is altitufh X ^«-5e of the four parallelogram on p, 7, /, *• as sides. This

is the scalar content of the four-parallelogram, positive when in the order 1, i, j, k

since, substituting these values in the alternates, the result is A'2 . i . Kj . /.•= 1.

41. We have identically A . K p . q . K r . s . t =^ 0.

Let p' ^ ^4 . 7 . A" r . 8, t' = — .4 . p . A' /
. .s,

r' =r .\ . p . K q . s, s' := — A . p . K q . r

Then ^4 . K pj . 7 . A' /
. s := S p'' K p ^ S 7' A^7, etc.,

and our expanded identity is,

(a.) t Sp' Kp = p S .t Kp' — q S.t Kq' —rS . t K r'^s.St Ks'.

4"J. If o 8 be a linear function, we have

(a.) 4 ^4 . p , A' 7 . ?• . o .s^ c . S p' K p, where c^4 A . 1 . K i . J .0 k

— _ [o 1 -U
J- O i -p j pj — /.• o k].
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We have c ^ — t when s =z S t K s, and (o) becomes,

{h.) I Sp' Kp— p' St Kp + (/ St Kq + r'St Kr^s' StKs.

43. If ^ (p, q), (j) (r, s) be linear functions, we have 6 . A . f (p, q) • 9 (»', s)

= c Sp' Kp where c = .4 V^ (1, i) . A 9 (j, k) + A >!' (j, A) . A (1,

i) -{- two similar terms found by advancing i, j, k\

If ih (p, q) = i/^i (p K q), then .4 i' [1, i) — 4 V'i k = — V'l i, dc.

" = V'l {Kp q), then J V (J, i) = — -1 •/' {j, k) =
</'i

i, etc.

"
. = Vj (p ry), then A f {1, i) = J. 1/' {j l>) =^

>l'i i, etc.

" — 2 .//j {Sp . q) tlien J i/'i i = i/'i t, A
<l' (1 k) = 0, etc

We have thus the identities,

(o. ) A . >!' {p K q) {K r s) = 0.

(6.) A . <!' (pq) o (rs) = 0.

(c.) A . <MSp . q) (S r . s) := 0.

(d.) 6 . A .pq . S(r Kr^)S{sK.<ii) = Ai S r^ . s^ . Sp' Kp.

In fact these methods may be employed to multiply formulas indefinitely.

The above are interesting as giving the general relations between the six vector

alternates of the same form that may be derived from the quaternions p, q, r, s.

44. We note the following geometrical interpretations: (p,, </,, etc. not

affected by A).

(a.) 2 A . p S . (j K 7, IS a line in the plane
( p, q) that ix perpendicular to q^ ;

viz., it is A p K q . projection of q^ on thr plane (p, 7).

That it is a line perpendicular to qi in the plane (p, q) is seen by its form

and the fact that the operator S . K q^ gives an alternate of a symmetric product

which is zero by th 2'

.

Note.—We have, for the complete proof:

A . p . K q . q^^l A{]) . K q . q, —p . Kq, . q \- 7, . Kp . q)

2 A . pS . q K qjZ=A(p.K.q,. 7 f p . K q qx) — A (7 K 7i . p

+ 7l A' 7 . p) == J .4 { 2 p . A' 7 . 7, + p . K q, . q — qi . Kp . q),

so that A . p . K q . qi . -\- 2 A . p S . q K 7, s= A p K q . q,. In this result re-

solve 7, into q/' -\- q/^' Tespect\ve\y parallel and perpendicular to the i)lane

(p, 7) and it becomes (since A . p . K q . q, ==: A p K 7 . q/''^),

2 A. p .S.q Kq, =A. p Kq . 7," Q . E . IJ.

45. Operating on the last result by S. K p^, and remembering, since the planes

(/>) 7)> (Pii 7/'^' i*re perpendicular, that .S'. A p K q . A^ p, K 7/^:= 0, we find,

(a). 2 .4 . ,S"(p ATp,) 'V(7 A'7,) = - .v. .1 p A'7. .4, p, A'7,

= product of areas times cosine of angle between the planes of the parallelo-

grams
{ p, q), (pj, 7i). If we drop the subscripts after expansion, we have the

squared tensor of the area of ( p, 7) riz., T - A p Kq.
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4(). Similarly we have,

(a). 6 A . p . S {(] K (ji) S (r K I'l) = line in space (p, q, r) perpendic-

ular to plane {q^, r^).

This line is therefore— A^ .q^ . Kr ^ .\_A . p. Kq . r ] j
, the constant factor

being determined by putting p, q, r^i, j, k, q-^, r^^j, k. This becomes, to the

factor Sr K r^, the line of 44 (a) when r^ is perpendicular to the plane (p, q)

(b). 6 A. Sip Kp, )S{q Kq, )S{r Kr,
)

= »S'. A .p. Kq. r K. A,. Pi . Kq, . r-^

= product of volumes times cosine of angle between the spaces of the parallelo-

pipeds (p, q, r), (p,, q^, ,•,)

(c). 24 A . p S {(j K q 1 ) .S' (
*• Kr, ) S{s K s,) := line perpendicular to

iPi, <h, 'J^'liPi- K'h- ''i
.Sp' Kp.

This becomes, to the factor .S' (s A'sJ, the line (a) when s, (p, '/, r).

(d). 24 A.S{p Kp, ) S iq Kq,) S (r Kr, ), S (s Ks,

)

= S p^ K p . S p\ K p, = product of scalar contents of

(p, q, r, s), (p,, q^, r„ s,).

47. We have given sufficient illustrations of the value of alternate processes.

The symmetric processes are capable of similar development although we have

scarcely touched upon them.

A New Form of Galvanometer. By J. Henry Lendi.

The galvanometer which I am about to describe is a result of the

difficulties experienced in attempting to make use of several very sensitive

galvanometers in the physical laboratory of the Rose Polytechnic Institute.

These difficulties are due to local changes in the earth's magnetic field.

arising from moving locomotives, electric motors and street cars in the

neighborhood of the laboratory. It will be seen that the existing condi-

tions are anything but favorable to the use of a very sensitive galvanom-

eter depending on the earth's field for the directive force.

In the past year or two several attempts have been made to overcome

this difficulty by making a galvanometer of the D'Arsonval type; that la,

one in which the directive force is independent of the earth's field. This

galvanometer differed only from the ordinary D'Arsonval instrument in

that the field was excited by an auxiliary battery instead of a permanent

magnet. By this means we w^ere able to secure a very intense controlling

field, and thereby, thought we should be able to make a galvanometer


