A Simple Proof That the Medians of a Triangle Concur John C. Gregg.
Theorem.-The three medians of a triangle are concurrent.

Demonstration.

Let AD and BE be two of the medians; they will meet in some point.G. Join CG and extend it to meet $A B$ in F. Extend AD to H, making $D H=D G$, and join $H B$ and $H C$.
Since BC and GH bisect each other, BGCH is a parallelogram. In the triangle $A C H$, since $G E$ is drawn through E, the middle point of $A C$ and parallel to HC, G is the middle of AH . And in the triangle ABH , since G is the middle of $A H$ and $G F$ is parallel to BH, F is the middle of AB and CGF is the third median, and the theorem is established.

Os the Dexsity and Surface Tension of Liquid Air.

> C. T. Knipp.
[Abstract. Publishel in the Physical Review, February, 1902.]
The rariation of the density of liduid air with time was determined. The liquid was contained in a given Dewar bulb. The sinker methol was used, and it was assumed that the coefficient of expansicn holds at the temperature of liquid air. A curre was platted which indicates that .933 is the density of liquid air when first made.

In the determination of the surface tension two methods were em-ployed-the capillary tube method and the maximum weight method. Owing to the distortion due to the bulb, also to the agitation of the liguid surface, the first was not considered reliable. The second method, however, worked very well. The variation of the surface tension with time of the liquid contained in the above bull, was determined. A curve was platted. From the curre the surface tension of liquid air when first made was found to be 9.4 dynes.

