Number of Colonies for a Satisfactory Soil Plate.

H. A. Noyes and G. L. Grounds, Purdue University.

The uniformity between the number of colonies developing on petri plates carrying equal sized aliquots has been used as the basis for ascertaining the number of colonies satisfactory for one plate. Prucha ${ }^{1}$ said in 1916: "Further study is needed to give sufficient basis for drawing definite conclusions, but the results so far point to the conclusion that the average of three plates from the same dilution approaches, reasonably closely, to the average of a hundred plates made from the same dilution, when that average is between one and two hundred colonies per plate."

The following points have served as the basis for determining the number of colonies satisfactory for a soil plate: Soil may be a medium for the growth of all kinds of micro-organisms; the rate at which different bacteria multiply varies considerably, and the antagonisms between organisms are affected by media, etc.

The plan for determining the number of colonies for a satisfactory soil plate was: First, to make many dilutions and platings of a prepared soil and study the numbers of colonies developing in three, seven and ten days incubation. Second, to compare the number of colonies developing from the different dilutions for evidence that plates from the higher bacterial dilution carried one-tenth the number of colonies of the lower dilution when the lower dilution did not give above the maximum number of bacteria that could be developed into colonies on the plates. Third, to give confirmation of the conclusions reached by routine laboratory data.

Unpublished results (obtained in this laboratory) show rather conclusively that practically all micro-organisms can be grown on a simple media. Differences in growth, in addition to being due to the virulence of the organisms and their natural characteristics, result from the media becoming unfavorable for growth, due to the presence of acid or basic reacting substances and specific end products of bacterial metabolisms. The importance of the proper conditions of aeration cannot be overemphasized. It has been noted that duplicate plates from pure cultures often agree well when even more than two hundred colonies are present per plate. Each organism in a pure culture multiplies under similar conditions and unfavorable media and end products stop rate and extent

[^0]

Fig 1. Many colonies bat all slow growing. (Good plate.)

Fig. 3. Porr distribution on plate. (Insatisfactory plate.)

Fig. 5. Few rapidly growing and well distributed colonies (Good plate.)

Fig. 2. Many coloniestof many characters. (Doubtful plate.)

Fig. 1 Few colonies rapid gr wing and pororly rlistribute:
Unsatisfactory plate.)

Fig. 6. Rapirlly growing colonies. Doubtful plate.)
of growth rather than stop the growth of any individual organism. With mixed cultures the media may be suitable for the growth of all the organisms present, but the differences in rate of growth and specific end products cause uneven plates. (See Plate I.)

The literature does not furnish figures on duplicate and triplicate platings where the bacterial dilutions were made from large aliquots (10 cc . or more). In milk it has been noted that platings giving as low as forty colonies are satisfactory. ${ }^{2}$ The soil is so much more ununiform than milk that the technic worked out at this station, ${ }^{3}$ and depending on large aliquots for diluting and plating, was followed.

Experimental Work.

A black sandy soil was air dried and sieved to unify both the soil and its flora. Triplicate platings were made from $1-40,1-400,1-4,000$, $1-40,000$ and $1-400,000$ bacterial dilutions. Counts were made after three, seven and ten days' incubation at 20° Centigrade. Especial care was taken in handling the plates to prevent contaminations. The check plates were in most cases entirely free from bacterial growth and their average has been deducted from the figures given. The results are given in Table I.

[^1]TABLE I
Ducreas ss in Numbers of Butterial Colonies ny Plates with Increasing Longth of Time of Inculation.

The table shows the following:

1. Increases in counts resulted ${ }^{\circ}$ from additional incubations when less than 200 colonies were present after three days' incubation.
2. Whether the counts increased or decreased, the counts after seven days' incubation fall between the three- and ten-day counts.
3. Two hundred or more colonies gave unreliable results.
4. The optimum number of colonies is probably much nearer 100 than 200 per plate.
The ratios between the number of colonies developing after ten days' incubation of the $1-40,000$ and $1-400,000$ bacterial dilutions of soils taken at different times from differently cropped areas are given in Table II. In carrying out the dilutings and platings the lower dilutions were made and plated before the higher dilutions were prepared, since it is believed that multiplications of the organisms have little effect on the higher dilutions under these conditions.

TABLE If.
Colory Counts on Platrs of Different Bacterinl Dilutions Corer Crop Imesthations.

Plot Supporting	Average of Triplicate Plates.			
	Dilution 1-40,000		Dilution 1-400,000	
Nothing				
Nov. 14, 1914	69.7	otories	8.3*	lonies
Feb. 6, 1915.			11.6	.
Mar. 2, 1915.	107.2	"	$10.7 *$	"
Mar. 27,1915 April 15, 1915	62.0 910	"	7.7*	"
Millett				
November 14, 1914 February 6, 1915	99.3	4	$11.3{ }^{\text {+ }}$	"
March 2, 1915.	172.7	"	22.7	"
March 27, 1915	88.3	"	11.4	"
April 15, 1915.	193.3	"	27.0	"
November 14, 1914 February 6, 1915	125.3	"	10.3 26.3	"
Mareh 2, $1915 .$.	165.7	"	17.0^{*}	"
Mareh 27, 1915	112.9	"	12.0*	"
April 15, 1915.	80.0	"	10.7	"
November 14, 1914	62.3	"	8.3	
February 6, 1915 March 2, 1915.	83.3 820	"	10.6	"
March 27, 1915	113.3	.	$11.0^{\text {r }}$.
April 15, 1915.	145.0	"	127	"
February 6, 1915. Mareh 2, 1915.	163.0 225.3	"	30.6	".
March 27, 1915.	175.8	"	16.0 =	"
April 15,1915	185.7	"	293	-
November 14, 1914	122.18		8.7	".
February 6, 1915 Mareh 2, 1915...		".	31.6 13.7	"
March 27, 1915	1143	"	16.0	\because
April 15, 1915.	200.0	"	27.6	"
November 14, 1914				
February 6, 1915 March 2, 1915	129.7	"	22.0	"
March 2, 1915 March 27, 1915	72.3	"	6.7^{*}	.
April 15, 1915.	110.3	"	$15.1)$	"
Hinter Rye (Sown late)				
November 14, 1914 February 6, 1915	70.0	"	${ }_{14.0}{ }^{\text {a }}$	\ldots
February 6, 1915. Marel 2, 1915..	148.0	"	16.3	"
Mareh 27, 1915	127.0	".	15.7	.
April 15, 1915	167.0	,	27.3	"
November 14, 1914 February 6, 915	44.7 91.0	" ${ }^{\text {" }}$	${ }_{15.3}{ }^{\text {\% }}$.
February 6,1915 March 2, $1915 .$.	254.3	.	23.3	"
March 27, 1915	46.0	"	6.7	"
April 15, 1915.	122.2	"	16.7	"

TABLE II-Continued.
Colony Counts on Plates of Different Bacterial Ditutions Cover Crop Investigations.

Plot Stopporting	Average of Triplicate Plates.			
	Dilution 1-40,000		Dilution 1-400,000	
Nothing				
November 14, 1914			6.3*	
February 6, 1915	${ }^{93.0}$	"	17.3	
March 2, 1915.	181.0 43.0	"	13.3 3.0	\because
April 15, 1915.	96.0	.	9.7	"
Buckwhea:				
November 14, 1914			10.3	
February 6, 1915	121.3	-	21.3	".
Marel March $2,1915$. 1915.	163.0 86.0	".		.'
March 27, 1915 April 15, 1915	86.0 119.7	.	6.4 14.0	"
Natural Grouth of II efrds				
November 14, 1914	54.7		5.7.	
February 6, 1915	100.3	\because	23.3	".
March 2, 1915. March $27,1915$.	152.5 82.3	\cdots	11.0	.
April 15,1915	108.0	.	13.7	"
A verage of all 60 comparisons	117.15	"	14.5	"
Average of 15 comparisons*. .	94.4	"	9.4	"

These results show:

1. The ratio between the number of colonies on plates from the $1-40,000$ and $1-400,000$ bacterial dilutions is dependent on the number of organisms present rather than on the cropping system or the time of the year the soil samples were taken.
2. The averages show:
(a) That the average of all comparisons for the $1-40,000$ bacterial dilutions was too great for satisfactory plates.
(b) That the results from the two dilutions tend to check when the number of colonies on the plates from the $1-40,000$ bacterial dilutions is under 100.

Table III has been compiled to show the ratios between the counts of the two dilutions when the number of colonies developing on the $1-40,000$ bacterial dilution is under 100 . These results are the cases where the counts from twenty-four soil samples averaged under 100 on the $1-40,000$ bacterial dilution.

TABLE III
Colonies on $1-40,000$ and 1-400,000 Bacterial Dilutzons.
(Counts on $1-40,000$ Bacterial Dilutions between 42 and 100.)

[^2]

Pla+e II. Good Petri Plates.

TABLE IV.
Colonies on 1-40,000 and 1-400,000 Baeterial Dilutions.
(Colonies on 1-40,000 Dilutions number under 30.)

dilutions	
1-40,000	1-400,000
29.0	3.3^{*} **
26.7	$2.3^{*}{ }^{* *}$
26.0	3.0^{*} **
25.3	3.0****
24.7	2.0^{*} **
23.0	3.0***
22.3	$2.1^{* * *}$
20.7	3.3** ${ }^{\text {m }}$
20.7	
20.3 20.0	$3.0{ }^{*}$ 3.0
19.0	$3.0{ }^{*}$
17.7	$2.0^{*}{ }^{* *}$
17.3	1.7* **
16.0	3.0^{*} **
16.0	2.3^{*} **
13.0	2.0***
11.7 11.3	${ }_{3}^{2.0}{ }^{*}$
11.3 11.0	3.3^{*} 1.0 $0^{* *}$
10.0	2.0 *
Average of all 191	2.5
Average of * 19.5	2.5
Average of ***21.0	2.2

All figures are averages of triplicate plates.
*Counts for $1-400,000$ dilution are within 1.5 colonies of 0.1 of number on 1-40,000 dilution.

* **Counts for $1-400,000$ dilution are within 0.7 colonies of 0.1 number on 140,000 dilution.

SUMMARY.

1. These and other tests (of which these are representative) have shown that thirty is near the optimum number of colonies for a petri plate 100 mm . in diameter. Plate II.
2. The averages of a sufficient number of plates carrying between 10 and 100 colonies are satisfactory for computing bacterial numbers.

[^0]: ${ }^{1}$ Prucha, M. J. Journal of Bacteriology, Vol. 1, No. 1, p. 92.

[^1]: ${ }^{2}$ Conn, H. W. Public Health Reports. U. S. Public Health Service, Vol. 30, No. 33, August, 1915.
 ${ }^{3}$ Noyes, H. A., and Voigt, Edwin, in Proceedings of Indiana Academy of Seience, 1916, pp. 272-301.

[^2]: ${ }^{* *}$ Counts are averages of triplicate plates.
 ${ }^{*}$ These numbers multiplied by 10 are within 15 of the numbers obtained in the lower bacterial dilution.

 Table III brings out that, while 100 colonies per plate are quite satisfactory, the 10 to 1 ratio is more nearly approximated when much less than 100 colonies were present per plate.

 To further substantiate the evidence that results are reliable when relatively small numbers of colonies are present per plate, the ten-day counts from the $1-40,000$ and $1-400,000$ bacterial dilutions of a sandy soil, low in organic matter, are given in Table IV.

