A New Triangle and Some of Its Properties. By Robert Judson Alex.
Explanation of Figure. - $A B C$ is any triangle, of which M is the circumcenter, O the incenter, H the orthocenter, and Q Nagel's Point. $A^{\prime} A^{\prime \prime \prime}, B^{\prime} B^{\prime \prime \prime}$ and $C^{\prime} \mathrm{C}^{\prime \prime \prime}$ are diameters perpendicular to the sides $B C, C A, A B$, respectively.

I. If A^{v}, B^{v}, C^{v} are the middle points of $A^{\prime}, B B^{\prime}, C C^{\prime}$, respectively, then $O M$ is the diameter of the circumcircle of $A^{\vee} B^{v} C^{v}$.

Since A^{v} is the middle point of $A A^{\prime}$,
$M A^{\mathrm{v}}$ is parallel to $A A^{\prime \prime \prime}$.
But $A A^{\prime \prime \prime}$ is perpendicular to $A A^{\prime}$,
$\therefore M A^{v}$ is perpendicular to $A A^{\prime}$.

Hence $M A^{v} O$ is a right angle.
Similarly $M B^{\vee} O$, and $M C^{\vee} O$ are right angles.
\therefore a circle upon $O M$ as diameter will pass through A^{v}, B^{v}, C^{v}.
II. The triangle $A^{v} B^{v} C^{v}$ is similar to Nagel's triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
$\angle B^{v} C^{\mathrm{r}} A^{\mathrm{r}}$ is the supplement $\angle B^{\mathrm{r}} O A^{\mathrm{r}}$.
$\angle B^{\mathrm{v}} O A^{\mathrm{v}}=\angle A O B$.

$$
=\pi-\left(\begin{array}{l}
1 \\
2
\end{array} A+\frac{1}{2} l\right) .
$$

$$
=A+B+C-\frac{1}{2}(A+B)
$$

$$
=C+\frac{1}{2}(A+B)
$$

$\pi-\angle B^{v} O A^{v}=\pi-\left[C+\frac{1}{2}(A+B)\right]$.
$=A+B+C-\left[C+\frac{1}{2}(A+B)\right]$.
$=\frac{1}{2}(1+B)$.
$\therefore B^{v} C^{v} A^{v}=\frac{1}{2}(A+B)$.
$M A^{\top}$ is perpendicular to $A A^{\prime}$.
$M C^{v}$ is perpendicular to $C C^{\prime}$.
$\angle\left(M A^{r}, M C^{v}\right)=\angle\left(A A^{\prime}, C C^{\prime}\right)$.
i. e., $\angle A^{V} M^{\mathrm{V}}=A^{\prime} O C$.

$$
=\frac{1}{2}(A+C) .
$$

But $\angle A^{v} M C^{v}=A^{v} B^{v} C^{v}$.
$\therefore \angle A^{v} B^{v}\left(^{\prime v}=\frac{1}{2}(A+C)\right.$.
Similarly $\angle B^{v} A^{v} C^{v}=\frac{1}{2}(B+C)$.
The angles of the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime \prime}$ (Nagel's triangle) are $\frac{1}{2}\left(\mathrm{~B}+C^{\prime}\right)$, $\frac{1}{2}(1+C), \frac{1}{2}(A+B)$, respectively. (Schwatt's (ieometric Treatment of Curves, page 39.)
$\therefore A^{v} B^{v} C^{v}$ is similar to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. It is also similar to $A^{\prime} B^{\prime} C^{\prime}$, for $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} b^{\prime \prime} C^{\prime \prime}$ are similar.
111. O is the centre of perspective of $A^{v} B^{v} C^{\prime v}$ and $U^{\prime} B^{\prime} C^{\prime}$.
IV. E, the centroid of $A B C$, is the internal center of similitude of the circumseribing circles of $A^{\prime \prime} l^{\prime \prime} C^{\prime \prime}$ and $A^{v} B^{v} C^{v}$.
O.M is parallel to HO.

It is known that I, E, M, are collinear, as are also O, E, ?.
$\therefore M M$ and $O Q$ intersect at $l:$
$\therefore E$ is the internal center of similitude.
V. E is also the center of perspective of $A^{v} B^{v} C^{v}$ and $A^{\prime \prime} b^{\prime \prime} C^{\prime \prime}$.

For, consider the triangle $\Lambda^{\prime \prime} I^{\prime \prime} I^{\prime}$.
$A^{\prime \prime} A^{v}$ is a median and so is $1 M_{a}$.
$\therefore A^{\prime \prime} A^{v}$ passes through E.
Now consider the triangle $B B^{\prime \prime} B^{\prime}$.
$B^{\prime \prime} B^{\mathrm{v}}$ is a median and so is $B M_{\mathrm{b}}$.
$\therefore B^{\prime \prime} B^{\mathrm{v}}$ passes through E.
In the same way we can show that $C^{\prime \prime} C^{v}$ also passes through E.
$\therefore E$ is the center of perspective of $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ and $A^{v} B^{v} C^{\mathrm{v}}$.
VI. All the lines in $A^{\mathrm{r}} B^{\mathrm{r}} C^{\mathrm{v}}$ are just one-half the corresponding lines in $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime \prime}$.

This is an immediate consequence of the fact $O M=\frac{1}{2} H$?. (Schwatt, Geomet. Curves, page 40.)
VII. The sides of the triangle $A^{\mathrm{v}} B^{\mathrm{v}} C^{\mathrm{v}}$ are oppositely parallel to the corresponding sides of $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, i. e., $A^{v} B^{v v}$ is parallel to $B^{\prime \prime} A^{\prime \prime}$, etc.
$O M$ is parallel to $H ?$.
$H A^{\prime \prime}$ is perpendicular to $A A^{\prime}$.
$M A^{v}$ is perpendicnlar to $A A^{\prime}$.
$\therefore \angle A^{\prime \prime} H Q=\angle O M A^{v}$.
In the same way
$\angle B^{\prime \prime} H Q=\angle O M B^{v}$.
$\angle C^{\prime \prime \prime} I I Q=\angle O M C^{\mathrm{r}}$.
This shows that the points A^{v}, B^{v}, C^{v} are located with respect to O, just as $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are located with respect to Q.
$\angle\left(O M, B^{\mathrm{v}} A^{\mathrm{v}}\right)$ is measured by $\frac{1}{2}\left(\operatorname{arc} O B^{\mathrm{v}}+\operatorname{arc} A^{\mathrm{v}} C^{\mathrm{v}}+\operatorname{arc} C^{\mathrm{v}} M\right)$.
$\angle\left(H Q, A^{\prime \prime} B^{\prime \prime}\right)$ is measured by $\frac{1}{2}\left(\operatorname{arc} B^{\prime \prime} \ell+\operatorname{arc} \Lambda^{\prime \prime} C^{\prime \prime}+\operatorname{arc} C^{\prime \prime} H\right)$.
But arc $O B^{r}$ measures the same angle in the circle on $O M$ as diameter, that the arc $B^{\prime \prime}($) measures in the circle on $H Q$ as diameter.

The same is also true of the arcs $A^{r} C^{r}$ and $A^{\prime \prime} C^{\prime \prime \prime}$, and $C^{v} M$ and $C^{\prime \prime} H$.
$\therefore \angle\left(O M, B^{\mathrm{v}} A^{\mathrm{v}}\right)=\angle\left(H Q, A^{\prime \prime} B^{\prime \prime}\right)$.
But since $O M$ is parallel to H ?, we have at once $A^{\prime \prime} B^{\prime \prime}$ parallel to $B^{r} A^{8}$.
In the same way we may prove that $B^{\prime \prime} C^{\prime \prime}$ is parallel to $C^{\prime v} B^{v}$ and $C^{\prime \prime \prime} 1^{\prime \prime}$ parallel to $\Lambda^{v} C^{v}$.
\therefore the sides of $A^{\vee} B^{v} C^{\vee}$ are oppositely parallel to the corresponding sides of $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
VIII. The triangle $A^{v} B^{v} C^{\mathrm{v}}$ is Nagel's triangle for the triangle $M_{\mathrm{a}} M_{\mathrm{b}} M_{\mathrm{e}}$.

It is known (Schwatt, page 41) that O is Nagel's point in the triangle $M_{\mathrm{a}} M_{\mathrm{b}} M_{\mathrm{c}}$, and that M is the orthocenter. The circle on $O M$ as diameter is Nagel's circle for the triangle $M_{\mathrm{a}} M_{\mathrm{b}} M_{\mathrm{c}}$. We know that the sides of $M_{\mathrm{a}} M_{\mathrm{b}} M_{\mathrm{c}}$ are oppositely parallel to the sides of $A B C$, and we have proven that $A^{\vee} B^{\vee} C^{\ulcorner }$, inscribed in the Nagel's circle of $M_{\mathrm{a}} M_{\mathrm{b}} M_{\mathrm{c}}$, has its sides oppositely parallel to the sides of Nagel's triangle for $A B C$.
$\therefore I^{v} B^{v} C^{v}$ is Nagel's triangle for $M_{\mathrm{a}} M_{\mathrm{b}} M_{\mathrm{c}}$ 。

