Take a circle whose diameter is thirty-six units; Angel's method makes the side of a 36 -gon equal to 3.33982 units, while the true length is $3.137 \pi 6$ units. The larger number of sides makes the error of the method more apparent.

Concurrent Sets of Tiree Lines Connected witil the 'Triangle. By Robert Judson Aley.

To the student of the pure geometry of the triangle, few subjects are more interesting than the concurrency of lines. The following collection of concurrent sets of three lines has been made in the hope that it may prove of value to geometric students. No claim is made to completeness. The list is as complete as the anthor could make it with the material to which he had access. Many of the notes, and a large number of the propositions have been taken fromi the published papers of Dr. J. S. Mackay, of Edinburgh, perhaps the foremost student of the geometry of the triangle. No classification of the propositions seems possible and so none has been attempted.

1. The median lines of a triangle are concurrent. The point of concurrency, usually denoted by G, is called the median point or centroid.
2. The in-symmedian lines of a triangle are concurrent. The point of concurrency is called the symmedian point or Grebe's point, and is generally denoted by K. (For a history of this point, see J. S. Mackay, in Proceedings of Edinburgh Mathematical Society, Vol. XI.)
3. The altitudes of a triangle are concurrent. The point of concurrency, usually denoted by H, is called the ortho centre. (This proposition occurs in Archimedes's Lemmas and in Pappus's Mathematical Collection.)
4. The internal angle bisectors of a triangle are concurrent. The point of concurrency is the center of the inscribed circle and is usually denoted by I. (Euclid IV, 4.)
5. The internal bisector of any angle of a triangle and the external bisectors of the other two angles of the triangle are concurrent. The points of concurrency, denoted by I_{1}, I_{2}, I_{3} are the centers of the three escribed circles.
6. The perpendiculars to the sides of a triangle at the midpoints of the sides concur at the center of the circumscribed circle. This point of concurrence is usually denoted by 0 . (Euclid.)
7. Lines drawn from the vertices to the points of contact of the in-circle with the opposite sides are concurrent. (The point of concurrency, Γ, is called the Gergonne Point. It was named by J. Neuberg after J. D. Gergonne.)
8. Lines drawn from the vertices to the points of contact of the escribed circles with the opposite sides concur at Q, Nagel's Point. (For a number of interesting properties of this point, see Schwatt's "Geometric Treatment of Curves.")
9. Lines drawn from the vertices making equal angles with the sides $A B$, $B C, C A$, respectively, coneur at Ω and Ω^{\prime}, the two Brocard points of the triangle.
10. If A_{1}, B_{1}, C_{1}, is Brocard's first triangle, then $A A_{1}, B B_{1}, C C_{1}$, concur at D, the point isotomic conjugate to K.
11. If L, M, N, be the midpoints of the sides of the triangle $A B C$, and L^{\prime}, M^{\prime}, N^{\prime} the midpoints of the sides of the triangle $A_{1} B_{1} C_{1}$, then $L L^{\prime}, M M^{\prime}$ and $N N^{\prime}$ coneur at S.
12. $A L^{\prime}, B . M^{\prime}$, and $C N^{\prime}$ concur at $S^{\prime} . S$ and S^{\prime} are isogonal conjugate points. (Schwatt's "(ieometric Treatment of Curves," p. 5.)
13. Perpendiculars from A, B, C upon $B_{1} C_{1}^{\prime}, C_{1} A_{1}, A_{1} B_{1}$, respectively, concur at N, a point on the circumeirele of the triangle $A B C$, known as Tarry's Point.
14. Lines through A, B, C, parallel to $B_{1} C_{1}, C_{1} \Lambda_{1}, A_{1} B_{1}$, respectively, concnr at a point on the eircumeircle of the triangle $A B C$ known as Steiner's Point.
15. Parallels to $A B$ and $C A$ through C and B, respectively, concur with the median through A. There are evidently three such points of concurrency. These points are sometimes called the external median points.
16. If three lines through the vertices are concurrent, their isogonal conjugates with respect to the angles of the triangle are also concurrent. (Steiner's Gesammelte Werke 1., 193,1881 .) If the ratios of the distances of the first point from the sides are $1: m: n$, those of the second point are

$$
\frac{1}{l}: \frac{1}{m}: \frac{1}{n} .
$$

17. Perpendiculars to the sides of the triangle $A B C$ from the midpoints of the sides of the orthic triangle of $A B C$ are conenrrent. (Edouard Lucas in Nonvelle Correspondance Mathématique II, 95, 218, 1876.)
18. The ex-symmedians from any two rertices and the in-symmedian from the third vertex are concurrent. There are evidently three such points of coneurrency. They are sometimes called the external symmedian points.
19. If three lines drawn from the vertices of a triangle to intersect the opposite sides are coneurrent, the lines isotomic conjugate to them are also concurrent. If the ratios of the distances of the first point of concurrency from the sides are $l: m: n$, the ratios of the second point are

$$
\frac{1}{a^{2} l}: \frac{1}{b^{2} m}: \frac{1}{r^{2} n}
$$

20. If the three perpendiculars from the vertices of one triangle upon the sides of another triangle are concurrent, then the three perpendiculars from the vertices of the latter upon the sides of the former are also concurrent. (Steiner, Gesammelte Werke I., 157, 1881.) (Lemoine calls such triangles orthologous and the points of concurrency centers of orthology.
21. Brocard's Triangle and $A B C$ are orthologous. Perpendiculars from A_{1}, B_{1}, C_{1}, upon $B C, C A, A B$, respectively, are concurrent. (See No. 13.)
22. If three points be taken on the sides of a triangle such that the sums of the squares of the alternate segments taken cyclically are equal, the perpendiculars to the sides of the triangle at these points are concurrent. (T. G. de Oppel, "Analysis Triangulorun," p. 32, 1746.)
23. If on the sides of a triangle $A B C$, equilateral triangles $L B C, M C A$, $N A B$ be described externally, $A L, B M, C N$ are equal and concurrent.
24. If on the sides of a triangle $A B C$, equilateral triangles $L^{\prime} B C, M^{\prime} C A$, $N^{\prime} A B$ be described internally, $A L^{\prime}, B M^{\prime} C N^{\prime}$ are equal and concurrent. (Dr. J. S. Mackay gives 24 in Vol. NV of Proceedings of Edinburgh Mathematical Society and attributes 23 to T. S. Davies in Gentleman's Diary for 1830, p. 36.)
25. If $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ be Nagel's triangle, then perpendiculars from A, B, and C upon $B^{\prime \prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime \prime}, A^{\prime \prime} B^{\prime \prime}$, respectively, are concurrent.
26. Perpendiculars from $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime \prime} 11$ on $B C, C A, A B$, respectively, are concurrent.
27. If $A^{\prime}, B^{\prime}, C^{\prime \prime}$ be the midpoints of the ares subtended by $B C, C A, A B$, respectively, then perpendiculars from $A^{\prime}, B^{\prime}, C^{\prime}$ upon $B^{\prime \prime} C^{\prime \prime \prime}$, ("' $A^{\prime \prime}, A^{\prime \prime} B^{\prime \prime}$, respectively, are concurrent.
28. Perpendiculars from $\Lambda^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ upon $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$, respectively, are concurrent.
29. If distances equal to $2 r$ (diameter of the inscribed circle) be laid off from the vertices on each of the altitudes, three points $A^{\mathrm{iv}}, B^{\mathrm{iv}}, C^{\mathrm{iv}}$ are obtained. Perpendiculars from A, B, C upon $B^{\mathrm{iv}} C^{\mathrm{iv}}, C^{\mathrm{iv}} A^{\mathrm{iv}}, A^{\mathrm{iv}} B^{\mathrm{iv}}$, respectively, are concurrent.
30. Perpendiculars from $A^{\text {iv }}, B^{\mathrm{iv}}, C^{\mathrm{Iv}}$ upon $B C, C A, A B$, respectively, are concurrent. (Nos. 25, 27 and 29 are given in Schwatt's "Ceometric Treatment of Curves," pages 40,43 and 44 . Nos. 26, 28 and 30 are direct consequences of the orthologous relation of the triangles. See No. 20.)
31. The perpendiculars from the middle points of the sides of Brocard's first triangle upon the corresponding sides of the triangle $A B C$ are concurrent.

- 32. The lines joining the middle points of the sides of a triangle with those of the segments towards the angles of the corresponding altitudes meet in a point and bisect each other.

33. The straight lines which join the midpoint of each side of a triangle to the midpoint of the corresponding altitude concur at the symmedian point. (Dr. F. Wetzig in Schlömlich's Zeitschrift, XII, 289.)
34. If two sides of a triangle are divided proportionally the straight lines drawn from the points of section to the opposite vertices, will intersect on the median from the third vertex.
35. Every two perpendiculars to the sides of a triangle at points of contact of escribed circles external to the same vertex are concurrent with the perpendicular to the opposite side at the point of contact of the inscribed circle. There will be three such points of concurrency.
36. If the three sides of a triangle be reflected with respect to any line, the three lines throngh the vertices parallel to the reflexions of the opposite sides are concurrent.
37. The rertices of $\angle B O$ are joined to a point O, and a triangle $A^{\prime} B^{\prime} C^{\prime}$ is constructed having its sides parallel to $1 O, B O, r^{\prime} O$ respectively. Lines through A^{\prime}, B^{\prime}, parallel to the corresponding sides of the triangle $A B C$ are concurrent.
38. If $N Y \%$ be any transersal of the triangle $A B C$, and if $A X, B Y, C Z$ form the triangle $I Q R$, then $I P, B Q$, and $C R$ are concurrent.
39. If D, E, F be the feet of the altitudes, then the lines comecting A, B, C to the middle points of $E F, F D, D E$, respectively, concur at the symmedian point.
40. The perpendioulars from $1, B, C$ upon $E F, F D, D E$ are concurrent.
41. Throngh the vertices of the triangle $A B C$ lines parallel to the opposite sides are drawn, meeting the circumcirele in $I^{\prime}, B^{\prime}, C^{\prime \prime} . B^{\prime} C^{V}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ meet $B C^{\prime}, C, 1, L B$ in P, Q, R, respecively. $A P, B Q, C R$ are concurrent.
42. W'ith the same notation as $41, I^{\prime} P, D^{\prime}(), C^{\prime} R$ are concurrent. (41 and 42 oecur in St. Joln's College Questions, 1890.)
43. Three circles are drawn each touching two sides of the triangle $1 B C$ and the circumcircle internally. The points of contact with the circumeircle are L, M, N, respectively. $\quad 1 L, B M, C N$ are concurrent.
44. If in 43 the circles touch the circumeircle externally in $L^{\prime}, M^{\prime}, N^{\prime}$, then $L^{\prime} 1, M^{\prime} B, N^{\prime \prime} C^{\prime}$ are concurrent. (4.8 and 44 are given by Professor de Longchamps, Ed. Times, July, I890.)
4.). If a circle tonch the sides of the triangle $A B C$ in X, Y, Z, then the lines joining the middle points of $B C, C, I, I B$ to the middle points of $\Lambda X, B Y$, ($\% /$, respectively, are concurrent.
45. If a circle cut the sides of the tiangle $1 B C$ in $X^{\prime}, X^{\prime} ; Y, Y^{\prime} ; Z, Z^{\prime}$; if $A \lambda, B E$. ($\%$ are concurrent, so also are $\left.A N^{\prime}, B\right)^{\prime \prime},\left({ }^{\prime} Z^{\prime}\right.$.
46. If X, Y, Z be three points on the sides of the triangle $A B C$ such that the pencil $D(A C, E F)$ is harmonic, then $A D, B E, C F$ are concurrent.
47. If tangents to the circumcircle at the vertices of the triangle $A B C$, meet in L, M, N, then $A L, B M$ and $C N$ are concurrent.
48. If on the sides of the triangle $A B C$, similar isosceles triangles $L B C$, $M C A, N A B$ be described, $A L, B M, C N$ are concurrent.
49. If the ex-circles touch the sides to which they correspond in D_{1}, E_{2}, F_{3}. the perpendiculars to the sides through these points are concurrent.
50. If D, E, F are the points of contact of the incircle with the sides of the triangle $A B C$ and if $D I, E I, F I$ meet $E F, F D, D E$ in L, M, N, respectively, then $A L, B M, C N$ concur.
51. If $D D^{\prime}, E E^{\prime}, F F^{\prime}$ are diameters of the incircle through D, E, F, the points of contact with the sides of the triangle $A B C$, then $A D^{\prime}, B E^{\prime}, C F^{\prime}$ concur.
52. If P, Q, R be collinear points in the sides $B C, C A, A B$ of the triangle $A B C$, and if $P^{\prime}, Q^{\prime} R^{\prime}$ be their harmonic conjugates with respect to those sides then $A P^{\prime}, B Q^{\prime}, C R^{\prime}$ are concurrent.
53. If squares $A P Q B, B U V C, C X Y A$ be described upon the sides of the triangle $A B C$ (all externally or all internally) and if $Q P$ meet $X Y$ in $a, P Q$ meet $V U$ in β, $U V$ meet $Y X$ in γ, then $a A, \beta B, \gamma$ concur in K the symmedian point. (Halsted, "El. Synthetic Geometry," p. 150.)
54. $A^{\prime} B^{\prime} C^{\prime}$ is the pedal triangle of Ω, and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is the pedal triangle of Ω^{\prime}. $B^{\prime \prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime}, A^{\prime \prime} B^{\prime}$ form the triangle $I^{\prime} Y Z$, whose sides are parallel to the sides of $A B C . \quad P Q R$ is the pedal triangle of $A P C . P X, Q Y, R Z$ concur at the circumcenter of $X Y Z$.
55. The Simson lines of the median triangle $L M N$ of the triangle $A B C$, with respect to the vertices P, Q, R of the pedal triangle, concur at the center of Taylor's circle.
56. The Simson lines of the pedal triangle $P Q R$ of the triangle $A B C$, with respect to the vertices L, M, N of the median triangle concur at the center of Taylor's circle.
57. If $B W, C V$ be perpendicular to $B C ; C U, A W$ perpendicular to $C A$; $A V, B U$ perpendicular to $A B$; then $A U, B V, C W$ concur at the circumcenter of $A B C$. (C. F. A. Jacobi, "De Triangulorum Rectilineorum Proprietatibus," p. 56.)
58. If triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are circumscribed about the triangle $A B C$ in such a manner that their sides are perpendicular to those of $A B C$, then $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ concur at the circumcenter of $A B C$. (Probably known

7-Science.
by Jacobi, but not explicitly stated by him. Lemoine stated it in 1873 to the Association Française pour l'Avancement des Sciences.)
60. When three lines through the rertices of a triangle are concurrent, the six bisectors of the three angles they determine intersect with the corresponding sides of the triangle at six points, every three of which on different sides connect concurrently with the opposite vertices if an odd number of them is internal.
61. When three points on the sides of a triangle are collinear, the six bisections of the three segments they determine connect with the corresponding vertices of the triangle by six lines, every three of which through different vertices are concurrent if an odd number of them is internal.
62. When three points on the sides of a triangle are collinear, their three lines of connection with the opposite vertices determine an exscribed triangle whose vertices connect concurrently with those of the original to which they correspond.
63. $H_{1}, I I_{2}, I H_{3}$ are points of intersection of $I I, B I$, $I I$, respectively, with the inscribed circle. The perpendiculars from H_{1}, H_{2}, H_{3} upon $B C, C A, A B$, respectively, are concurrent.
64. The twelve radii from the incenter and the excenters of a triangle, perpendicular to the sides of the triangle, meet hy threes in four points which are the circumcenters of the triangles $I_{2} I_{3}, I_{3} I_{2}, I_{3} I I_{1}, I_{2} I_{1} I . \quad\left(I, I_{1}, I_{2}, I_{3}\right.$ are the incenter and excenters. See note, p. 99, Vol. I, I'roceedings Edinburgh Math. Suc., Ir. Mackay).
65. D, E, F are points of contact of I-circle with the sides of the triangle $A B C, D_{1}, E_{1}, F_{1}$ points of contact of I_{1}-circle with sides, I_{2}, E_{2}, F_{2}, of I_{2}-circle, H_{3}, E_{3}, F_{3} of I_{3}-circle.
$A D_{1}, D, E_{1}, C F_{1}$ concur at Γ_{1}
$A J_{2}, B E_{2}, \mathrm{CF}_{2}$ concur at I_{2}
$A D_{3}, I E_{3}, C F_{3}$ concur at I_{3}
The points $\mathrm{I}_{1}, \mathrm{r}_{2}, \mathrm{I}_{3}$ are called the associated Gergonne points. See No. 7.
66. it $D_{1}, B E_{3},{ }^{\prime} F_{2}$ concur at // 1
$A D_{3}, B E_{1}, \quad\left(F_{1}\right.$ concur at $/{ }_{2}$
$A I_{2}, B E_{1}, C F$ concur at Q_{3}
$Q_{1}, Q_{2}, ?_{3}$, together with ? given in No. 8, are called the Nagel points.
67. $1 Q, B Q_{3}, r Q_{2}$ concur at Γ_{1}.
$1 Q_{3}, B Q, C Q_{1}$ coneur at I_{2}.
$A Q_{2}, B Q_{1}, C Q$ concur at Γ_{3}.
68. $A \Gamma, B \Gamma_{3}, C \Gamma_{2}$ concur at Q_{1}
$A \Gamma_{3}, B \Gamma, C \Gamma_{1}$ concur at Q_{2}.
$A \Gamma_{2}, B \Gamma_{1}, C \Gamma$ concur at Q_{3}.
69. I $B, D E, D_{2} E_{1}$ concur at x.
$B C, E F, E_{3} F_{2}$ concur at y.
$C A, F D, F_{1} D_{3}$ concur at z.
x, y, z lie on a line n, say.
70. A $B, D_{1} E_{2}, D_{3} E_{3}$ concur at x_{1}.
$B C, E_{2} F_{3}, E_{1} F_{1}$ concur at y_{1}.
$C A, F_{3} D_{1}, F_{2} D_{2}$ concur at z_{1}.
x_{1}, y_{1}, z_{1} lie on a line p.
71. $A B, N P, I_{1} I_{2}$ concur at x_{2}. $B C, P Q, I_{2} I_{3}$ concur at y_{2}. $C A, Q N, I_{3} I_{1}$ concur at z_{2}. (N, P, Q are the feet of the interior angle bisectors.) x_{2}, y_{2}, z_{2} lie on a line q.
72. The three lines n, p, η are concurrent.
73. $A^{\prime}, B^{\prime}, C^{\prime}$ are the midpoints of the sides of the triangle $A B C$. Lines drawn through $A^{\prime}, B^{\prime}, C^{\prime}$, respectively, parallel to the triads of angular transversals which determine $\Gamma, \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, concur at $\Gamma^{\prime}, \Gamma_{1}{ }^{\prime}, \Gamma_{2}{ }^{\prime} \Gamma_{3}{ }^{\prime}$. Then $\Gamma^{\prime} \Gamma^{\prime}$, $\Gamma_{1} \Gamma_{1}{ }^{\prime}, \Gamma_{2} \Gamma_{2}{ }^{\prime}, \Gamma_{3} \Gamma_{3}{ }^{\prime}$ are concurrent at the centroid of the triangle $A B C$.
74. $I \Gamma^{\prime}, I_{1} \Gamma_{1}{ }^{\prime}, I_{2} \Gamma_{2}{ }^{\prime}, I_{3} \Gamma^{\prime}{ }_{3}$ concur at the symmedian point of the triangle $A B C$.
75. $I Q, I_{1} Q_{1}, I_{2} Q_{2}, I_{3} Q_{3}$ concur at the centroid of the triangle $A B C$.
(The propositions 65 to 75 inclusive are taken from Mackay's "Euclid" and his "Symmedians and Concomitant Circles.")
76. If $D E F$ be the triangle formed by joining the inscribed points of contact of the triangle $A B C ; D_{1} E_{1} F_{1}$ the triangle formed by joining the inscribed points of contact of the triangle $D E F ; D_{2} E_{2} F_{2}$ the triangle formed by joining the inscribed points of contact of the triangle $D_{1} E_{1} F_{1} ; I, I_{1}, I_{2}, I_{3}$ are the inseribed and escribed centres. $I_{1} D, I_{2} E, I_{3} F$ concur at the homothetic centres of the triangles $D E F$ and $I_{1} I_{2} I_{3} . \quad I D_{1}, I_{3} E_{1}, I_{2} F_{1}$ concur at the homothetic centre of the triangles $D_{1} E_{1} F_{1}$ and $I I_{3} I_{2}$, and so on. (Dr. Mackay, Proceedings Edinburgh Math. Soc., Vol. I, pp. 51-2.)
77. If three straight lines drawn from the vertices of a triangle are concurrent, the three lines drawn parallel to them from the midpoints of the opposite sides are also concurrent ; and the straight line joining the two points of concurrency passes through the centroid of the triangle and is there trisected. (Frigier in Gergonne's Annales, Vol. VII, 170.)
78. If $A B C$ be any triangle and O any point whatever, and A_{1}, B_{1}, C_{1} be points symmetrical to O with respect to the midpoints of $B C, C A, A B$, then $A A_{1}, B B_{1}, C C_{1}$ concur at a point P. The eentroid G lies on the line $O P$ and divides it in a constant ratio. (M. d'Ocagne in Nouvelles Annales, Third Series I, 239.)
79. If through K (Grebe's Point) parallels to the sides $B C, C A, A B$ of the triangle $A B C$ are drawn, meeting these sides in $D, D^{\prime} ; E, E^{\prime} ; F^{\prime}, F^{\prime}$, respectively, and if $E F$ and $E^{\prime} F^{\prime}$ intersect in $p ; F D$ and $F^{\prime} D^{\prime}$ in $q ; D E$ and $D^{\prime} E^{\prime}$ in r, then $A p, B q, C r$ are concurrent. (Dr. Mackay, "Symmedians of the Triangle," etc., p. 39.)
80. $A^{\prime}, B^{\prime}, C^{\prime}$ are the midpoints of the sides of the triangle $A B C$, and I, I_{1}, I_{2}, I_{3}, are the in and ex certers.
$I_{1} A^{\prime}, I_{2} B^{\prime}, I_{3} C^{\prime}$ concur at the symmedian point of the triangle $I_{1} I_{2} I_{3}$.
$I A^{\prime}, I_{3} B^{\prime}, I_{2} C^{\prime}$ concur at the symmedian point of the triangle $I I_{3} I_{2}$.
$I_{3} A^{\prime}, I B^{\prime}, I_{1} C^{\prime}$ concur at the symmedian point of the triangle $I_{3} I_{1}$;
$I_{2} A, I_{1} B^{\prime}, I C^{\prime}$ concur at the symmedian point of the triangle $I_{2} I_{1} I$.
81. If $A K, B K, C K$ cut the sides of the triangle $A B C$ at the points R, S, T and the circumcircle of the triangle $A B C$ at the points D, E, F, then
$A K, B F, C E$ are eoncurrent.
$B K, C I, A T$ are concurrent.
$C K, A E, B D$ are concurrent.
82. X, Y, Z are the feet of the perpendiculars in the triangle $A B C$. If H_{1}, H_{2}, H_{3} be the ortho-centers of the triangles AYZ, ZBX, XYC, then the lines $H_{1} \mathrm{X}, \mathrm{H}_{2} \mathrm{Y}, \mathrm{H}_{3} Z$ are concurtent.
83. If $H_{1}{ }^{\prime}, H_{2}{ }^{\prime}, H_{3}{ }^{\prime}$ be the ortho-centers of the triangles $H Y^{\prime} Z, \mathrm{NCZ}, \mathrm{NY} B$.
$H_{1}{ }^{\prime \prime}, H_{2}{ }^{\prime \prime}, H_{3}{ }^{\prime \prime}$ be the ortho-centers of the triangles $C Y Z$, NHZ, NYA.
$H_{1}{ }^{\prime \prime \prime}, H_{2}{ }^{\prime \prime \prime}, H_{3}{ }^{\prime \prime \prime}$ be the ortho-centers of the trianglas $l ; Y Z, \mathcal{N} A /$, XYYI.
And if T_{1} be the homothetic center of the triangles $X Y Z$ and $H_{1}{ }^{\prime} H_{2}{ }^{\prime} H_{3}{ }^{\prime}$.
T_{2} be the homothetic center of the triangles $X Y Z$ and $H_{1}{ }^{\prime \prime} H_{2}{ }^{\prime \prime} H_{3}{ }^{\prime \prime}$. T_{3} be the homothetic center of the triangles XYZ and $H_{1}{ }^{\prime \prime \prime} H_{2}{ }^{\prime \prime \prime} H_{3}{ }^{\prime \prime \prime}$.
Then $A T_{1}, B T_{2}, C T_{3}$ concur at the centroid of the triangle $\overline{\mathrm{I} Y Z}$.
(Nos. 80, 81, 82, 83 are extracted from the work of Dr. Mackay in the Proceedings of the Edinhurgh Math. Soc.)
84. If through K^{r} parallels be drawn to $B C, C A, A B$, they intersect the corresponding altitudes in $A_{1}, B_{1}, C_{1}^{\prime}$, respectively, which are the vertices of Broeard's first triangle. $B A_{1}, C B_{1}, A C_{1}$ coneur at $\Omega ; B C_{1}, C A_{1}, A B_{1}$ coneur at $\Omega \Omega^{\prime}$, and thus the two Brocard points are determined.

