Note on "Note on Smith's Definition of Multiplication." By A.
L. Baker.

The rule should be: To multiply one quantity by another, perform upon the multiplicand the series of operations which was performed upon unity to produce the multiplier.

This does not mean, perform upon the multiplicand the series of successive operations which was performed upon unity and upon the successive results.

Thus, to multiply b by $\sqrt{ } a$: If we attempt to consider $\sqrt{ }$ a as derived by taking unity a times and then extracting the square root of the result, we violate the rule. To get $\sqrt{ }$ a by performing operations upon unity, we must (e. g., $a=2$) take unity 1 time, 4 times, .01 times, .004 times, etc., and add the results. Doing this to b, we get the correct result, viz., $\sqrt{ } 2 \mathrm{~b}=$ 1.414...b.

The rule is thus universal, applyiug to all multipliers, complex, quaternion and irrational.

The Geometry of Simson's Line. By C. E. Smith, Indiana Unifersity.

1. If from any point in the circumference of the circumcircle to a $\triangle A B C$ $\perp s$ to the sides of the \triangle be drawn, their feet, P_{1}, P_{2}, and P_{3}, lie in a straight line. This is known as Simson's Line.
(a) First proof that $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} lie in a straight line.

Since $\angle \mathrm{s} \mathrm{PP} P_{3} \mathrm{~B}$ and $\mathrm{PP}_{1} \mathrm{~B}$ (Fig. 1.) are both right $\angle \mathrm{s}, \mathrm{P}, \mathrm{P}_{3}, \mathrm{P}_{1}$ and B are concyclic.

Likewise P, P_{2}, A, and P_{3} are concyclic.
Now $\angle \mathrm{PP}_{3} \mathrm{P}_{1}+\angle \mathrm{PBP}_{1}=180^{\circ}$.
and $\angle \mathrm{PAC}+\angle \mathrm{PBP}_{1}=180^{\circ}$.
$\therefore \angle \mathrm{PP}_{3} \mathrm{P}_{1}=\angle \mathrm{PAC}$,
But $\angle \mathrm{PAC}+\angle \mathrm{PAP}_{2}=180^{\circ}$.
$\therefore \angle \mathrm{PP}_{3} \mathrm{P}_{1}+\angle \mathrm{PAP}_{2}=180^{\circ}$.
But $\angle \mathrm{PAP}_{2}=\angle \mathrm{PP}_{3} \mathrm{P}_{2}$ (measured by same arc of auxiliary circle)
$\therefore \angle \mathrm{PP}_{3} \mathrm{P}_{1}+\angle \mathrm{PP}_{3} \mathrm{P}_{2}=180^{\circ}$, or a straight \angle.
$\therefore \mathrm{P}_{1} \mathrm{P}_{3}$ and Y_{2} lie in a straight line.
(b) Second proof that P_{1}, P_{2}, and P_{3} lie in a straight line.

Draw PC and PA (Fig. 1).
Now $\angle \mathrm{s} \mathrm{PP}{ }_{2} \mathrm{C}$ and $\mathrm{PP}_{1} \mathrm{C}$ are right $\angle \mathrm{s}$.
$\therefore \mathrm{P}, \mathrm{P}_{1}, \mathrm{C}$ and P_{2} are concyclic with PC as diameter.
$\angle \mathrm{PAB}=\angle \mathrm{PCB}=\angle \mathrm{PCP}_{1}$,
and $\angle \mathrm{PP}_{2} \mathrm{P}_{1}=\angle \mathrm{PCP}_{1}$,

$\therefore \angle P A B=\angle \mathrm{PAP}_{3}=\mathrm{PP}_{2} \mathrm{P}_{1}$
Now P, P_{2}, A, P_{3} are concyclic.

$$
\begin{array}{r}
\therefore \angle \mathrm{PP}_{2} \mathrm{P}_{3}=\mathrm{PAP}^{\prime} \text { and } \\
\therefore \angle \mathrm{PP}_{2} \mathrm{P}_{3}=\angle \mathrm{PP}_{2} \mathrm{P}_{1}
\end{array}
$$

$\therefore P_{2} P_{1}$ passes through P_{3} and the three points are collinear.
2. If $\mathrm{P} \mathrm{P}_{1}$ be produced until it intersects the circumcircle of $\angle A B C$, at the point U_{1}, then AL_{1} is \mid to Simson's line of I'. (Fig. 1.)

Now the points $\mathrm{P}, \mathrm{P}_{1}, \dot{\mathrm{P}}_{2}$, and C are concyclic.
\therefore the $\angle \mathrm{P}_{1} \mathrm{PC}=\angle \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{C}$.
But $\angle \mathrm{P}_{1} \mathrm{PC}=\angle \mathrm{U}_{1} \mathrm{AC}$, (arc Cl_{1} common to both)
and $\angle \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{C}=\mathrm{I}^{\top} \mathrm{AC}$.

If two angles are equal and have a pair of sides in coincidence, then the other sides must also either coincide or be parallel. Hence $A U \| P_{1} P_{2} P_{3}$, or to Simson's line. Thus we can show BU_{2} and CU_{3} parallel to Simson's line of P and therefore $\mathrm{AU}_{1}, \mathrm{BU}_{2}$ and CU_{3} are parallel to each other.
3. Let AT (Fig. 1) be isogonal conjugate to AP. Then Simson's line of $\mathrm{P} \perp \mathrm{AT}$.

Also Simson's line of T $\perp \mathrm{AP}$.
Now, AU_{1} is Simson's line of P , and
$\angle \mathrm{BAT}=\angle \mathrm{PAC}=180^{\circ}-\angle \mathrm{PU}_{1} \mathrm{C}$.
Also $\angle \mathrm{BAU}_{1}=\angle \mathrm{BCU}_{1}$.
$\therefore \angle \mathrm{BAT}-\angle \mathrm{PAU}_{1}=180^{\circ}-\angle \mathrm{PU}_{1} \mathrm{C}-\angle \mathrm{BCU}_{1}$.
$\therefore \mathrm{U}_{1} \mathrm{AT}=180^{\circ}-90^{\circ}=90^{\circ}$ for $\angle \mathrm{PU}_{1} \mathrm{C}$ is measured by $\frac{1}{2}$ are PC and $\angle \mathrm{BCU}_{1}$ is measured by $\frac{1}{2}$ are BU_{1}.

But $\mathrm{PP}_{1} \mathrm{C}$, which is a right \angle, is measured by $\frac{1}{2}$ arc $\left(\mathrm{PC}+\mathrm{BU}_{1}\right)$.
$\therefore \mathrm{U}_{1} \mathrm{~A} \perp \mathrm{AT}$ and so Simson's line of P must be. In like manner we can prove Simson's line of T $\perp \mathrm{AP}$.

Now, if Q is the point on the circumference opposite P, then $A U_{1}$ and $A Q$ are isogonal conjugate lines, for
$\angle \mathrm{U}_{1} \mathrm{AT}=\angle \mathrm{QAP}=90^{\circ}$ and
$\angle \mathrm{TAC}=\angle \mathrm{BAP}$ with $\angle \mathrm{U}_{1} \mathrm{AQ}$ common.
$\therefore \angle \mathrm{U}_{1} \mathrm{AT}-\angle \mathrm{QAU}_{1}-\angle \mathrm{TAC}=\angle \mathrm{QAP}-\angle \mathrm{U}_{1} \mathrm{AQ}-\angle \mathrm{BAP}$.
$\therefore \angle \mathrm{BAU}_{1}=\angle \mathrm{CAQ}$.
4. If P and Q are opposite points on the circumference, their Simson's lines are \perp to each other.

Now, the isogonal conjugate of $A P$ is \perp to isogonal conjugate of $A Q$, and, therefore, since the Simson's line of $P \| A U_{1}$ and the Simson's line of $Q A T$, the Simson's line of P will be \perp to Simson's line of Q .
5. A side, BC , and its altitude in a triangle are the Simson's lines of A^{\prime} and A, respectively, where A^{\prime} is the point on the circumference opposite A. (Fig 4.)

Since the feet of the $\perp \mathrm{s}$ from A to AB and AC coincide with A , and the foot of the \perp from A to $B C$ is H_{a}, therefore the Simson's line of A is $A H_{a}$. Again, the feet of $\perp \mathrm{s}$ from A^{\prime} to the sides AB, AC, and BC are B, C, and A^{\prime} a, respectively ; hence BC is the Simson's line of A^{\prime}.

Since $\mathrm{AH}_{\mathrm{a}}, \mathrm{BH}_{\mathrm{b}}$ and CH_{c} are the Simson's lines of A, B, and C, respectively, their Siffson's lines concur in H, the ortho-center.
6. Let A^{\prime}, B^{\prime} and C^{\prime} be the points on the circumference opposite A, B and C , respectively, and $\mathrm{H}_{\mathrm{a}}{ }^{\prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime}$, and $\mathrm{H}_{\mathrm{c}}{ }^{\prime}$ be the points where $\mathrm{AH}_{\mathrm{a}}, \mathrm{BH}_{a}$ and CH_{a}, produced, cut the circumference, then the

Stimson's lines of $\mathrm{A}, \mathrm{B}^{\prime}$ and C^{\prime} concur in A ,
Stimson's lines of B, C^{\prime} and A^{\prime} concur in B, and
Simpson's lines of C, A^{\prime} and B^{\prime} concur in C,
Also, since the Simson's line of $\mathrm{H}_{\mathrm{a}}{ }^{\prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime}$ must pass through H_{a}, H_{b} and H_{c}, respectively, we have the

Stimson's lines of A, A^{\prime} and H_{a}^{\prime} concurring in H_{a},
Simpson's lines of $\mathrm{B}, \mathrm{B}^{\prime}$ and H_{b} concurring in H_{b} and
Stimson's lines of $\mathrm{C}, \mathrm{C}^{\prime}$ and H_{e} concurring in H_{c}.
Since the point of concurrency of the Simson's lines of the extremities of a chord \perp to BC is the point where this chord intersects BC , it follows that the Simon's lines of the extremities of all chords \perp to BC are concurrent with Simson's line of A^{\prime}; the Simson's lines of extremities of all chords $\perp \mathrm{AC}$ are concurrent with Simon's line of l^{\prime} '; and the Simson's lines of the extremities of all
chords $\perp A B$ are concurrent with Simson's line of C^{\prime}. Thus there is a triple infinity of sets of three points on the circumcircle, the points of concurrency of the Simson's lines of which lie in the sides of the fundamental triangle.
7. Since, in the cosine circle (Fig. 6), $\mathrm{F}^{\prime} \mathrm{EDD}^{\prime}, \mathrm{FEE}^{\prime} \mathrm{D}^{\prime}$, and $\mathrm{FF}^{\prime} \mathrm{E}^{\prime} \mathrm{D}$ are all rectangular, it follows at once that the Simson's line of D^{\prime}, with regard to rt. $\triangle \mathrm{DEF}$, is FD , of $\mathrm{E}^{\prime}, \mathrm{DE}$ and of F^{\prime}, EF. Also Simson's line of D , with regard to rt. $\triangle D^{\prime} E^{\prime} F^{\prime}$, is $D^{\prime} E^{\prime}$, of $E, E^{\prime} F^{\prime}$ and of $F, F^{\prime} D^{\prime}$.

8. In Fig. 2, $\mathbf{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}$ are the midpoints of the sides of fundamental triangle opposite A, B, and C , respectively. $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}, \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ are the midpoints of AH, BH and CH , respectively, where H is the ortho-center.

Now $\mathrm{M}_{\mathrm{b}} \mathrm{A}=\mathrm{M}_{\mathrm{b}} \mathrm{H}_{\mathrm{a}}$.
$\therefore \angle \mathrm{M}_{\mathrm{b}} \mathrm{H}_{\mathrm{a}} \mathrm{A}=\angle \mathrm{M}_{\mathrm{b}} \mathrm{AH}_{\mathrm{a}}$.
Likewise $\angle \mathrm{M}_{\mathrm{c}} \mathrm{H}_{\mathrm{a}} \mathrm{A}=\angle \mathrm{M}_{\mathrm{c}} \mathrm{AH}_{\mathrm{a}}$.
$\therefore \angle \mathrm{M}_{\mathrm{c}} \mathrm{H}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}}=\angle \mathrm{A}$.
We also know $\angle \mathbf{M}_{\mathrm{c}} \mathbf{M}_{\mathrm{a}} \mathbf{M}_{\mathrm{b}}=\angle \mathrm{A}$.
$\therefore \mathrm{M}_{\mathrm{c}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{a}}$ and H_{a} are concyclic.
In the same way we can show
M_{c}, M_{b}, M_{a} and H_{b} and M_{c}, M_{b}, M_{a}, and H_{c} to be concyclic.
\therefore Since three points determine a circle, these six points are all concyclic.
Now $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ are the feet of the altitudes of $\triangle \mathrm{AHB}$.
But we have just shown that, in any triangle, the feet of its altitudes and the midpoints of its sides are all concyclic.
$. \cdot \mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ and H_{c} and $\mathrm{H}_{\mathrm{a}^{\prime \prime}}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$, and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ are concyclic.

Then, since three points determine a circle, $\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}, \mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$, $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ must all lie on the same circle. This circle, since it passes throngh nine definite points, is called the nine-point circle.

A \perp to the midpoint of $H_{a} M_{a}$ meets HM at its midpoint, say F. So \perp s to $H_{b} M_{b}$ and $H_{c} M_{c}$ at their midpoints meet $H M$ in F.

\therefore F, the midpoint of HM, is the centre of the nine-point circle.
Since it is the circumcircle of rt. $\quad M_{a} M_{1} M_{c}$, which lias just half the dimensions of $\triangle A B C$, its radius will be just half the radius of the larger circle.
9. The nine-point circle bisects any line drawn from H to the circumcircle of the fundamental triangle.

Let $M X$ and FY be any two radii of the two circles. Now, since F is the mid-point of MH and $\mathrm{FY}=\frac{1}{2} \mathrm{M}, \mathrm{HYX}$ is a straight line with Y as its midpoint.
10. Simson's line of P bisects PII. (Fig. 7.)

Let us suppose that D is the midpoint of PII. Then D lies on the nine-point circle. Then we must prove it lies on $\mathrm{P}_{1} \mathrm{P}_{2}$.

Since $P P_{1}$ and $A H$ are \perp to $B C$, they are $\|$. Also since D is midpoint of PH, $\angle \mathrm{P}, \mathrm{DH}_{\mathrm{a}}$ is isosceles. Let E be midpoint of AH . Then $\mathrm{DE}=\frac{1}{2} \mathrm{AP}$.
D, E, and H_{a} are on the nine-point circle.
A, P, and C are on the circumcircle.
Then since $\mathrm{DE}=\frac{1}{2} \mathrm{AP}$ and radius of nine-point circle $=\frac{1}{2} \mathrm{R}, \angle \mathrm{EH}_{4} \mathrm{D}$, inscribed in nine-point circle,$=\angle A C P$, inscribed in circumcircle.
$\angle \mathrm{EH}_{\mathrm{a}} \mathrm{D}=\angle \mathrm{ACP}=\angle \mathrm{DP}_{1} \mathrm{P}$.
Let the intersection of $P_{1} D$ and $A C$ be P_{2},
Then $\angle \mathrm{PP}_{1} \mathrm{D}=\angle \mathrm{ACP}=\angle \mathrm{PCP}_{2}$,
$\therefore \mathrm{P}, \mathrm{P}_{1}, \mathrm{C}$, and P_{2} are concyclic and $. \cdot \angle \mathrm{PP}_{2} \mathrm{C}=\angle \mathrm{PP}{ }_{1} \mathrm{C}=90^{\circ}$ and $\mathrm{PP}_{2} \perp \mathrm{AC}$.
$\therefore P_{1} D$ is Simson's line of P.
The point where PH cuts Simson's line of P is called its center.
11. The line joining A^{\prime}, the point opposite the vertex A of $\triangle \mathrm{ABC}$ (Fig. 4), with H , the ortho-centre, bisects the side BC.

For, the Simson line of A^{\prime} is $B C, \cdot$. $B C$ bisects $A^{\prime} H$, and, as we have shown, this bisection is on the nine-point circle. But the nine-point circle cuts $B C$ at two places only, at H_{a} and M_{a}; hence it is obvious that $\mathrm{A}^{\prime} \mathrm{H}$ passes through M_{a}, and thus it bisects BC.

12. S, the intersection of the Simson lines of P and Q, the extremities of any diameter of the circumcircle, lies on the nine-point circle. (Fig. 3.)

Take W as the midpoint of QH and D of PH. Then they are both on the nine-point circle and WD must be its diameter, since it is $\|$ and equal to $\frac{1}{2} \mathrm{QP}$. Then, as $\angle \mathrm{S}$ is a right \angle, S must also lie on the nine-point circle. S is called the vertex of either Simson line.
13. $\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}$ and $\mathrm{H}^{\prime \prime \prime}$ (Fig. 7) are the points on the circumcircle through which AH, BH and CH , respectively, pass.

U is the point where PH^{\prime} cuts BC .
V is the point where $\mathrm{PH}^{\prime \prime}$ cuts AC .
W is the point where $\mathrm{PH}^{\prime \prime \prime}$ cuts AB .
Now, U, V, I and W lie on a straight line \|t the Simson line of P.
$\angle \mathrm{VHH}_{\mathrm{b}}=\angle \mathrm{VH}^{\prime \prime} \mathrm{H}_{\mathrm{b}},\left(\mathrm{H}_{\mathrm{b}}\right.$ is midpoint of $\mathrm{HH}^{\prime \prime}$.)

$$
=\angle \mathrm{PH}^{\prime \prime} \mathrm{B}=\angle \mathrm{PCB}
$$

$\angle \mathrm{UHH}_{\mathrm{a}}==\mathrm{UH}^{\prime} \mathrm{H}_{\mathrm{a}}=\angle \mathrm{PH}^{\prime} \mathrm{A}=\angle \mathrm{PCA}$.
Also $\mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{C}$, and H_{b} are concyclic.
$\therefore \angle \mathrm{H}_{\mathrm{a}} \mathrm{HH}_{\mathrm{b}}+\angle \mathrm{C}=180^{\circ}$.
But we have just proven $\angle \mathrm{VHH}_{\mathrm{b}}+\angle \mathrm{UHH}_{a}=\angle \mathrm{C}$.
$\therefore \angle \mathrm{H}_{\mathrm{a}} \mathrm{HH}_{\mathrm{b}}+\angle \mathrm{VHH}_{\mathrm{b}}+\mathrm{UHH}_{\mathrm{a}}=180^{\circ}$, and
$\therefore \mathrm{U}, \mathrm{H}$ and V are collinear.
Now, $\angle \mathrm{WHH}^{\prime \prime \prime}=\mathrm{WH}^{\prime \prime \prime} \mathrm{H}=180^{\circ}-\angle \mathrm{PH}^{\prime \prime \prime} \mathrm{C}$.
$=\angle \mathrm{B}+\angle \mathrm{UH}^{\prime} \mathrm{H}$.
$=\angle \mathrm{B}+\angle \mathrm{UHH}^{\prime}$.
Also $\mathrm{B}, \mathrm{H}_{\mathrm{a}}, \mathrm{H}$, and H_{c} are concyclic.
$\therefore \angle B+\angle \mathrm{H}_{\mathrm{a}} H \mathrm{H}_{\mathrm{c}}=180^{\circ}$ and
$\therefore \angle \mathrm{B}+\angle \mathrm{UHH}^{\prime}+\angle \mathrm{H}_{\mathrm{c}} \mathrm{HU}=180^{\circ}$.
So then $\angle W H H^{\prime \prime \prime}+\angle \mathrm{H}_{\mathrm{c}} H U=180^{\circ}$, which proves W, H and U collinear.
Therefore all four points, W, V, II and U must be collinear.
Now, PP_{2} is to $\mathrm{HII}^{\prime \prime}$, for both are \perp to AC .
$\therefore \mathrm{PVX}$ is isosceles, and $\mathrm{PP}_{2}=\mathrm{P}_{2} \mathrm{X}$.
Now, $\angle \mathrm{P}_{2} \mathrm{NV}=\angle \mathrm{PCP}_{1}$ and $\mathrm{P}, \mathrm{P}_{2}, \mathrm{C}$, and P_{1} are concyclic.
$\therefore \angle \mathrm{PP}_{2} \mathrm{P}_{1}=\angle \mathrm{PCP}_{1}=\angle \mathrm{P}_{2} \mathrm{XV}$.
$\therefore \mathrm{I}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$ is to UVW.
From this we can also see that Simson's line of P bisects all lines from P to the line WVIIU.
14. The angle between the Simson lines of two points P and P^{\prime} is equal to an \angle inscribed in the circumcircle with PP^{\prime} an arc and also to an angle inscribed in the nine-point circle with are equal to the part of the circumference includerl between the centers of their Simson's lines.

Draw $\mathrm{P}^{\prime} \mathrm{H}^{\prime}$ (Fig. 7), letting it cut BC in U^{\prime}. Then, from above proposition, $\mathrm{HU}^{\prime} \|$ to Simson's line of P^{\prime}. Also IIU \| to Simson's line of P.
$\therefore \angle\left(\mathrm{S}, \mathrm{S}^{\prime}\right)=\angle\left(\mathrm{HU}^{\prime} \mathrm{HU}^{\prime}\right)$. Now, H is the center of similitude of the circumcircle and the nine-point circle. Draw $\mathrm{P}^{\prime} \mathrm{H}$, letting it cut the Simson line of P^{\prime} at D^{\prime}.

Then P and $\mathrm{D}, \mathrm{P}^{\prime}$ and D^{\prime} and H^{\prime} and H_{a} are corresponding points.
$\therefore \mathrm{H}_{a} \mathrm{D}$ and $\mathrm{H}_{2} \mathrm{D}^{\prime}$ and $\mathrm{H}^{\prime} \mathrm{P}$ and $\mathrm{H}^{\prime} \mathrm{P}^{\prime}$ are lines, whence $\angle \mathrm{DH}_{a} \mathrm{D}^{\prime}=$ $\angle \mathrm{PH}^{\prime} \mathrm{P}^{\prime}=\angle \mathrm{U}^{\prime} \mathrm{HU}$.
15. If P^{\prime} and Q (Fig. 1) be the extremities of a diameter and R and R^{\prime} two other opposite points such that $P R$ and $Q R^{\prime}$ are \perp to Simson's line of P and $P R^{\prime}$ and QR are \perp to Simson's line of R , then the Simson's line of R is parallel to PQ and Simson's line of R^{\prime} is \perp to $P Q$.

Since the angle between the Simson's lines of two points is equal to an angle inscribed .in the are between them, we know that $\angle Z X Y=\angle Y Q Z$. Also ZA \| QY.
\therefore QZXY is a parallelogram, and XY, the Simson's line of R, is $\|$ to PQ . Then it follows that Simson's line of R is \perp to $P Q$, since it is conjugate to Simson's line of R.
16. If ES and FS (Fig. 3) are the Simson's lines of opposite points on the circumcircle, and $E F$ be any other Simson's line, then $T^{\prime} E=T^{\prime} F=T^{\prime} S$, where T' is the center of the last named Simson's line.
$\angle \mathrm{T}^{\prime} \mathrm{ED}=\angle \mathrm{T}^{\prime} \mathrm{SD}$ (a previous proposition).
$\therefore T^{\prime} E=T^{\prime} S$. In like manner we can show $T^{\prime} F=T^{\prime} S . \quad \therefore T^{\prime} E=T^{\prime} F$.
The Simson's lines of opposite points on the circumcircle are said to be conjugate.
17. The are between the vertices of two Simson's lines (not conjugate) is twice as large as the arc between their centers. For $\mathrm{ET}^{\prime} \mathrm{S}$ is an isosceles \angle and $\angle \mathrm{ET}^{\prime} \mathrm{S}=2 \mathrm{~T}^{\prime} \mathrm{ST}$. But $\mathrm{ET}^{\prime} \mathrm{S}=\mathrm{S}^{\prime} \mathrm{T}^{\prime} \mathrm{S}$. \therefore arc $\mathrm{SS}^{\prime}=2$ arc $\mathrm{T}^{\prime} \mathrm{T}$. Now suppose $T^{\prime} S$ is less than R (it never can be greater), then $S^{\prime \prime}$ could be another point on the nine-point circle such that $\mathrm{T}^{\prime} \mathrm{S}^{\prime \prime}=\mathrm{T}^{\prime} \mathrm{S}$ and $\angle \mathrm{ES}^{\prime \prime} \mathrm{F}$ would also be a right \angle. It is thus evident that there are always two pairs of conjugate Simson's lines passing through E and F .

The limit of EF is 2 R .
For when S and $\mathrm{S}^{\prime \prime}$ coincide at $\mathrm{S}^{\prime \prime \prime}, \mathrm{T}^{\prime} \mathrm{S}^{\prime \prime \prime}=\mathrm{T}^{\prime} \mathrm{E}=\mathrm{T}^{\prime} \mathrm{F}=\mathrm{r}$. In this case we have but one pair of conjugate Simson's lines.
18. If two Simson's lines, SD and $\mathrm{S}^{\prime \prime} \mathrm{D}^{\prime \prime}$, which are not conjugate, cut a third Simson's line, $T^{\prime} S^{\prime}$, at equal distances, E and F , from its center, T^{\prime}, then
the line joining the point of intersection, K , of SD and $\mathrm{S}^{\prime \prime} \mathrm{D}^{\prime \prime}$ with S^{\prime}, the vertex of $\mathrm{T}^{\prime} \mathrm{S}^{\prime}$ is a Simson's line conjugate to $\mathrm{T}^{\prime} \mathrm{S}^{\prime}$.

Let ES and FS' intersect at K , and $\mathrm{ES}^{\prime \prime}$ and FS intersect at N (Fig. 3). Since the pair of lines, ES, FS and $\mathrm{ES}^{\prime \prime}, \mathrm{FS}^{\prime \prime}$ are conjugate Simson's lines, they

are \perp to each other, or $\mathrm{ES}^{\prime \prime}$ and FS are altitudes in the $\triangle \mathrm{EKF}$. Therefore KN is the third altitude, and we may prove S^{\prime} to be the foot of this altitude on EF.

The nine-point circle of the $\triangle A B C$ passing through the feet, S and $S^{\prime \prime}$, of the two altitudes, and through the middle point, T^{\prime}, of one side of the $\triangle E K F$, must
be also the nine-point circle of the $\triangle E K F$, and therefore the second intersection of the nine-point circle with the side, EF, must be the foot of the altitude to EF, or KS^{\prime}.

Hence S^{\prime} is the foot of the altitude KN. But any side and its altitude is a pair of conjugate Simsou's lines, and since EF is a Simson's line of a point on the circumcircle of $\mathrm{ABC}, \mathrm{KN}$ is the Simson's line conjugate to EF .

Any triangle like EKF formed by three Simsou's lines, the altitudes of which are Simson's lines conjugate to the sides, and having the nine-point circle in common with the triangle ABC, we shall call a Simxon Triangle.

Since the nine-point circle is common to both triangles ABC and EKF, the radius of the nine-point circle is one-half the radius of the circumcircle of either triangle; therefore the radius of the circumcircle of any Simson triangle is equal to the radius of the circumcircle of the original triangle.
19. The common vertex $\mathrm{S}^{\prime \prime \prime}$ of the pair of limiting Simson's lines belonging to TS is on the same straight line as K, N and S^{\prime}. For, since $\mathrm{T}^{\prime} \mathrm{S}^{\prime \prime \prime}$ is a diameter of the nine-point circle, $\angle \mathrm{T}^{\prime} \mathrm{S}^{\prime} \mathrm{S}^{\prime \prime \prime}=90^{\circ}$, or $\mathrm{S}^{\prime} \mathrm{S}^{\prime \prime \prime} \perp$ to $\mathrm{EF} . \therefore \mathrm{S}^{\prime \prime \prime}$ is on the altitude KS^{\prime}.
20. $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$ are points on the circumference opposite $\mathrm{H}_{\mathrm{a}}{ }^{\prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime}$ respectively. (Fig. 5.) Prove that the Simson's lines of $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$, and $\mathrm{C}^{\prime \prime}$ are 1 respectively to $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime \prime}$ and $\mathrm{CC}^{\prime \prime}$ and that they are \perp respectively to $\mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$, $A^{\prime \prime} C^{\prime \prime}, A^{\prime \prime} B^{\prime \prime}$. Now the angle between the Simson's lines of A and $A^{\prime \prime}$ will be equal to an angle measured by $\frac{1}{2}$ are $\mathrm{AA}^{\prime \prime}$. But the angle between AA^{\prime} and AH_{a}, the Simson's line of A , is measured by an arc equal to this. Therefore Simson's line of $\mathrm{A}^{\prime \prime}$ is $\|$ to AA^{\prime}. So the Simson's line of $\mathrm{B}^{\prime \prime}$ is $\|$ to BB^{\prime} and Simson's line of $\mathrm{C}^{\prime \prime} \|$ to CC^{\prime}.

Now are $\mathrm{H}_{\mathrm{b}}{ }^{\prime} \mathrm{CB}^{\prime \prime}=\operatorname{arc} \mathrm{H}_{\mathrm{c}^{\prime}} \mathrm{BC}^{\prime \prime}=180^{\circ}$.
$\therefore \operatorname{arc} \mathrm{H}_{\mathrm{b}}^{\prime} \mathrm{CC}^{\prime}=\operatorname{arc} \mathrm{H}_{\mathrm{e}^{\prime}} \mathrm{BB}^{\prime \prime}$
$\therefore \mathrm{H}_{\mathrm{b}^{\prime}}^{\prime} \mathrm{H}_{\mathrm{c}}^{\prime} \| \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$, also $\mathrm{H}_{\mathrm{b}^{\prime}} \mathrm{H}_{\mathrm{a}}^{\prime} \| \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime}$ and
$\mathrm{H}_{\mathrm{a}}{ }^{\prime} \mathrm{H}_{\mathrm{c}}{ }^{\prime} \| \mathrm{A}^{\prime \prime} \mathrm{C}^{\prime \prime}$. Therefore $\triangle \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ is equivalent to $\triangle \mathrm{H}_{\mathrm{a}}{ }^{\prime} \mathrm{H}_{\mathrm{b}}{ }^{\prime} \mathrm{H}_{\mathrm{c}}{ }^{\prime}$, being inscribed in same circle and having sides equal and parallel.
$\angle \mathrm{H}_{\mathrm{c}}{ }^{\prime} \mid \mathrm{CA}=\angle \mathrm{H}_{1}{ }^{\prime}$ BA. (From similarity of $\triangle \mathrm{s} \mathrm{ABH} \mathrm{A}_{\mathrm{b}}$ and $\mathrm{ACH}_{\mathrm{c}}$).
$\cdot \cdot \operatorname{arc} \mathrm{AH}_{\mathrm{b}^{\prime}}=\operatorname{arc} \mathrm{AH}_{\mathrm{c}^{\prime}}, . \cdot$ since AA^{\prime} is a diameter it must be \perp to chord $\mathrm{H}_{\mathrm{c}}{ }^{\prime} \mathrm{H}_{\mathrm{b}}^{\prime}$ and therefore to $\mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$. So we may prove $\mathrm{BB}^{\prime} \perp \mathrm{A}^{\prime \prime} \mathrm{C}^{\prime \prime}$ and $\mathrm{CC}^{\prime} \perp$ $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime}$.
21. The Simson's lines of $H_{a}{ }^{\prime} H_{1}{ }^{\prime} \mathrm{I}_{\mathrm{c}}{ }^{\prime}$ form a Simson's triangle XYZ of which the Simson's lines of $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}, \mathrm{C}^{\prime \prime}$ are the altitudes, $\mathrm{A}^{\prime \prime}, \mathrm{C}^{\prime \prime}, \mathrm{B}^{\prime \prime}$ being points opposite $\mathrm{H}_{\mathrm{a}}{ }^{\prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime}, \mathrm{H}_{\mathrm{c}}{ }^{\prime}$ respectively.

Let Simson's lines of $\mathrm{H}_{\mathrm{b}}{ }^{\prime}, \mathrm{H}_{\mathrm{c}^{\prime}}$, and $\mathrm{H}_{\mathrm{c}}{ }^{\prime}, \mathrm{H}_{\mathrm{a}}{ }^{\prime}$ and $\mathrm{H}_{\mathrm{a}}{ }^{\prime}, \mathrm{H}_{\mathrm{b}^{\prime}}$ concur in X, Y, and Z respectively.

The Stimson's lines of $\mathrm{A}^{\prime \prime}$ and $\mathrm{H}_{\mathrm{a}}{ }^{\prime}$, of $\mathrm{B}^{\prime \prime}$ and $\mathrm{H}_{\mathrm{b}}{ }^{\prime}$, and of $\mathrm{C}^{\prime \prime}$ and H_{c} ' are conjugate, therefore their intersections, u, v, and w will lie on the nine-point circle of rt $\triangle \mathrm{ABC}$. The Simson's lines of $\mathrm{H}_{\mathrm{a}}{ }^{\prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime}$ must pass through $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$, H_{c} respectively and therefore rt $\triangle X Y Z$ must have the same nine-point circle as $\triangle A B C$. Now since H_{a}, H_{b}, and H_{c} can not be the feet of altitudes they must be the midpoints of the sides and therefore u, v and w must be the feet of altitudes.

Thus the four points of concurrency are established, namely $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and $\mathrm{S}^{\prime \prime}$. $S^{\prime \prime}$, being formed by the intersection of the altitudes of $\triangle X Y Z$, is the orthocenter of the same.

22. If R, I' and Q (Fig. S) be taken as the midpoints of ares BC, AC and AB , respectively, and R^{\prime}, P^{\prime} and Q^{\prime} be the points on the circumference opposite R, P, and Q, then the Simeon's lines of R, P, and (! will form a $\triangle X Y Z$, the altitudes of which will be the Simson's lines of R^{\prime}, Q^{\prime} and P^{\prime}.

It may be assumed that $\mathcal{N} \mathrm{Y} Z$ is the triangle formed by the intersection of the Stimson lines of R, P and Q. That the Simson's line of Q ' is the altitude on side NZ may be established thus:
$\angle A Q_{b}, Q_{c}=\angle A-\angle A Q_{c} Q_{b}$

But, since Q, Q_{c}, A, and Q_{b} are concyclic, $\angle A Q_{b} Q_{c}=\angle A Q_{c}$, which is measured by $\frac{1}{2}$ arc $A Q^{\prime}$.

Also, since $\mathrm{Q}, \mathrm{B}, \mathrm{Q}_{\mathrm{a}}$, and Q_{c} are concyclic, $\angle \mathrm{BQQ}_{\mathrm{c}}=180^{\circ}-\angle \mathrm{BQ}_{\mathrm{a}} \mathrm{Qe}_{\mathrm{c}}$.
$\therefore \angle \mathrm{Q}_{\mathrm{c}} \mathrm{Q}_{\mathrm{a}} \mathrm{C}=\angle \mathrm{BQQ}$, which is measured by $\frac{1}{2}$ arc BQ^{\prime}. But are $\mathrm{BQ}^{\prime}=$ $\operatorname{arc} \mathrm{AQ}^{\prime}$.
(A.) $\therefore \angle \mathrm{AQ}_{\mathrm{b}} \mathrm{Q}_{\mathrm{c}}=\angle \mathrm{CQ}_{\mathrm{a}} \mathrm{Q}_{\mathrm{c}}$.

But $\angle \mathrm{A} \mathrm{Q}_{\mathrm{b}} \mathrm{Q}_{\mathrm{c}}=\angle \mathrm{A}-\angle \mathrm{AQ}_{\mathrm{c}} \mathrm{Q}_{\mathrm{b}}$, and
$\angle \mathrm{CQ}_{\mathrm{a}} \mathrm{Q}_{\mathrm{c}}=\angle \mathrm{B}+\angle \mathrm{BQ}_{\mathrm{c}} \mathrm{Q}_{\mathrm{a}}$.
$=\angle \mathrm{B}+\angle \mathrm{AQc} \mathrm{Q}_{\mathrm{b}}$.
Now the Simson's line of Q^{\prime} is \perp to $Q_{b} Q_{a}$ the Simson's line of $Q_{\text {, at }} Q_{c}$, and $\angle \mathrm{AQ}_{\mathrm{c}} \mathrm{P}_{\mathrm{b}}=\angle \mathrm{B}$ and $\angle \mathrm{BQ}_{\mathrm{c}} \mathrm{R}_{\mathrm{a}}=\angle \mathrm{A}$. And from (A.) we know that \angle $\mathrm{Q}_{\mathrm{b}} \mathrm{Q}_{\mathrm{c}} \mathrm{P}_{\mathrm{b}}=\angle \mathrm{Q}_{\mathrm{a}} \mathrm{Q}_{\mathrm{c}} \mathrm{R}_{\mathrm{a}}, \therefore \angle \mathrm{P}_{\mathrm{b}} \mathrm{Q}_{\mathrm{c}} \mathrm{H}^{\prime},=\angle \mathrm{R}_{\mathrm{a}} \mathrm{Q}_{\mathrm{c}} \mathrm{H}^{\prime}$ and thus Simson's line of Q^{\prime} is proven to be the internal bisector of $\angle \mathrm{Q}_{\mathrm{c}}$ in $\mathrm{rt} . \triangle \mathrm{R}_{\mathrm{a}} \mathrm{P}_{\mathrm{b}} \mathrm{Q}_{\mathrm{c}}$. In like manner the Simson's line of R^{\prime} may be proven to be the internal bisector of $\angle R_{a}$, and Simson's line of P^{\prime}, the internal bisector of $\angle P_{a}$ of same triangle. Since the Nimson's lines of Q, R, and P are \perp to these internal bisectors at the vertices of the \triangle, they must be the external bisectors of the same angles. But we know that the internal and external bisectors of the $\angle \mathrm{s}$ of a triangle concur in four points. Thus $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and H^{\prime} are each points of concurrency of three Simson's lines. H^{\prime}, of course, is the ortho-center of $\triangle \mathrm{XYZ}$.
23. $\triangle X Y Z$ has the same nine-point circle as $\triangle \mathrm{ABC}$ and is therefore inscribable in the same sized circle as rt. $\triangle \mathrm{ABC}$.

That it has the same nine-point circle follows easily from the fact that three points that must lie on its nine-point circle, the feet of its altitudes, are coincident with three points on the ABC nine-point circle, the midpoint of its sides. Since three points determine a circle, their nine-point circles must be identical.
24. The Simson's line of P is $\|$ to $R Q$, Simson's line of R is $\|$ to $P Q$, and Simson's line of Q is $\|$ to RP .

The Simson's line of R will be \perp to Simson's line of R^{\prime}, so let us prove Simson's line of $\mathrm{R}^{\prime} \perp$ to PQ^{\prime}.

Now, the Simson's line of R^{\prime} will be \perp to the line isogonal conjugate to $A R^{\prime}$ which we call AT. Then let us prove AT $\|$ to PQ .

To lue $\| \angle \mathrm{ADP}$ must $=\angle \mathrm{CAR}^{\prime}$.
$\angle \mathrm{ADP}$ is measured by $\frac{1}{2} \operatorname{arc}(\mathrm{AP}+\mathrm{BQ})$.
$\angle \mathrm{CAR}^{\prime}$ is measured by $\frac{1}{2}$ are CR^{\prime}.
Arc $\mathrm{AP}=\operatorname{arc} \mathrm{CP}$, and $\frac{1}{2}$ arc BQ measures $\frac{1}{2} \angle \mathrm{C}$.

8-Science.

$$
\text { Now, } \begin{aligned}
\angle P R R^{\prime} & =90^{\circ}-P R^{\prime} R . \\
& =90^{\circ}-\frac{1}{2}(\mathrm{~A}+\mathrm{B}) . \\
& =\frac{1}{2} \mathrm{C}
\end{aligned}
$$

\therefore arc $B Q=\operatorname{arc} P R^{\prime}$, and so $\angle A D P=\angle C A R$. Hence $A T$ is $P Q$ and \therefore Simon's line of R is to PQ . In like manner we may prove Simeon's line of P to RQ, and Simeon's line of Q to RP.

25. The Simon's lines of $H_{a}{ }^{\prime \prime}, H_{b}{ }^{\prime \prime}, H_{c}{ }^{\prime \prime}$ (Fig. 9) with respect to \triangle $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}$, inscribed in the nine-point circle, form a $\mathrm{rt} . \leftrightharpoons \mathrm{XY} /$, the altitudes of which are the Simon's lines of M_{a}, M_{b} and M_{c} with respect to the same rt. \triangle.

H , the orthocenter of ABC , is the incenter of $\triangle \mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$, for $\angle \mathrm{s} \mathrm{AH}$ and $\mathrm{AH}_{\mathrm{b}}, \mathrm{H}$ being right $\angle \mathrm{s}, \mathrm{A}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}$ and H_{b} are concyclic with AH as diameter.
$\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$, being midpoint of AH , is the center and therefore chord $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{b}}=$ chord $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{c}}$. Therefore $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ bisects $\angle \mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ bisects $\angle \mathrm{H}_{\mathrm{b}}$, and $\mathrm{H}_{\mathrm{c}} \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ bisects $\angle \mathrm{H}_{\mathrm{c}}$.
$\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ are pointe on the nine-point circle opposite $\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}$, respectively, for, since MM_{a} and $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ are and the center of the nine-point circle is F , the midpoint of MH , a line from M_{a} through F , will meet AH_{a} on the circumference of the nine-point circle, necessarily at $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$. In like manner $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$, can be shown to be opposite M_{b}, and $\mathrm{H}^{\prime \prime}$ opposite M_{c}.

This proves $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ | to $\mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}}$ and equal to it, and therefore to AB , $\mathrm{H}_{\mathrm{b}}{ }^{\prime} \mathrm{H}_{\mathrm{c}}{ }^{\prime}$ equal to $\mathrm{M}_{\mathrm{b}} \mathrm{M}_{\mathrm{c}}$ and parallel to both $\mathrm{M}_{\mathrm{b}} \mathrm{M}_{\mathrm{c}}$ and BC , and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ equal to $\mathrm{M}_{\mathrm{c}} \mathrm{M}_{\mathrm{a}}$ and parallel to both $\mathrm{M}_{\mathrm{c}} \mathrm{M}_{\mathrm{a}}$ and CA.

Now, the Simsou's line of M_{a} will be \perp to BC and to AH_{a}, for $\mathrm{H}_{\mathrm{a}} \mathrm{C}$ is isogonal conjugate to $\mathrm{H}_{\mathrm{a}} \mathrm{M}_{\mathrm{a}}$ since $\mathrm{A} \mathrm{H}_{\mathrm{a}}$ bisects $\angle \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{c}}$, thas making $\angle \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}=$ $\angle \mathrm{Ma}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{c}}$. Therefore the Simson's line of $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$, since it is conjugate to Simson's line of M_{a}, is to $\mathrm{M}_{\mathrm{c}} \mathrm{M}_{\mathrm{b}}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{c}}$ and BC. In like manner we can prove the Simson's line of $M_{\mathrm{b}} \perp \mathrm{AC}$ and to BH_{b} and, therefore, the Simson's line of $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ to $\mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{c}}, \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ and AC ; and Simson's line of $\mathrm{M}_{\mathrm{c}} \perp \mathrm{AB}$ and to CH_{c} and, therefore, the Simson's line of $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime} \mid$ to $\mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ and AB .

Now $\triangle \mathrm{M}_{\mathrm{Ha}} \mathrm{M}_{\mathrm{Hb}} \mathrm{M}_{\mathrm{Hc}}$ is oppositely similar to $\triangle \mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}$. Also, from what we have proven before, the Simson's lines of M_{a} and $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ must both pass through M_{Ha}. Then the Simson's line of M_{a} being || to AH_{a}, will bisect $\angle \mathrm{M}_{\mathrm{Hb}}-\mathrm{M}_{\mathrm{Ha}} \mathrm{M}_{\mathrm{Hc}}$. In like manner we can show that the Simson's lines of M_{b} and M_{c} bisect $\angle \mathrm{s} \mathrm{M}_{\text {Ha }}$ $\mathrm{M}_{\mathrm{Hb}} \mathrm{M}_{\mathrm{Hc}}$ and $\mathrm{M}_{\mathrm{Ha}} \mathrm{M}_{\mathrm{Hc}} \mathrm{M}_{\mathrm{Hb}}$. Now the Simson's lines of $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ are \perp to Simson's lines of $\mathbf{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}$ and \mathbf{M}_{c}, respectively, and therefore they are the external bisectors of the $\angle \mathrm{s}$ of thert. $\triangle \mathrm{M}_{\mathrm{Ha}} \mathrm{M}_{\mathrm{Hb}} \mathrm{M}_{\mathrm{Hc}}$. Since the internal and external bisectors of a \triangle meet by threes in four points, we may conclude the Simson's lines of $\mathrm{M}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$, and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ concur in X , Simson's lines of $\mathrm{M}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$, and $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ concur in Y , Simson's lines of $\mathrm{M}_{\mathrm{c}}, \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$, and $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ concur in Z , and Simson's lines of $\mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}} \mathrm{M}_{\mathrm{c}}$ concur in $\mathrm{S}^{\prime \prime \prime}$. $\mathrm{S}^{\prime \prime \prime}$, we see, is the orthocenter of $\triangle \mathrm{XY} \mathrm{I}_{\text {a }}$ and in-center of $\triangle \mathrm{M}_{\mathrm{Ha}} \mathrm{M}_{\mathrm{Hb}} \mathrm{M}_{\mathrm{Hc}}$.
$\triangle \mathrm{XYZ}$ has its sides $\|$ to sides of $\triangle \mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}} \mathrm{M}_{\mathrm{c}}$ and oppositely $\|$ to $j \mathrm{~s}_{\mathrm{s}} \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ and ABC .
26. Let us prove $\triangle X Y Z$ equivalent to $\triangle \mathrm{s} \mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}} \mathrm{M}_{\mathrm{c}}$ and $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ and, therefore, inscribable in the nine-point circle.
$\triangle \mathrm{M}_{\mathrm{Ha}} \mathrm{M}_{\mathrm{Hb}} \mathrm{M}_{\mathrm{Hc}}$ bears the same relation to $\triangle \mathrm{XYZ}$ that $\triangle \mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}$ does to $\triangle \mathrm{ABC}$. Therefore, since $\triangle \mathrm{M}_{\mathrm{Ha}} \mathrm{M}_{\mathrm{Hb}} \mathrm{M}_{\mathrm{Hc}}$ is $\frac{1}{4}$ the size of $\triangle \mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}, \triangle \mathrm{XYZ}$ must be $\frac{1}{4}$ the size of rt. $\triangle \mathrm{ABC}$ and thus equivalent to $\triangle \mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}} \mathrm{M}_{\mathrm{c}}$, and rt . $\triangle \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$ $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime} \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ and hence inscribable in the nine-point circle of the fundamental \triangle.
27. If $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime \prime} \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime \prime} \mathrm{H}_{S^{\prime}}{ }^{\prime \prime \prime}$ are the points on the nine-point circle opposite $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ and H_{c} respectively, then the Simson's lines of $\mathrm{M}_{\mathrm{c}}, \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$, and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime}$ concur in M_{Hc}, for $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ is Simson's line of $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime}$. Likewise the Simson's lines of \mathbf{M}_{b}, $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ and $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime \prime}$ concur in M_{Hb} and the Simson's lines of $\mathrm{M}_{\mathrm{a}}, \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$, and $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime \prime}$ concur in M_{Ha}.
28. Now considering $M_{\mathrm{a}} \mathrm{M}_{\mathrm{b}} \mathrm{M}_{\mathrm{c}}$ as the reference \triangle in the nine-point circle, let us prove that the Simson's lines of these same points, i. e., $\mathrm{M}_{\mathrm{c}}, \mathrm{H}_{\mathrm{e}}{ }^{\prime \prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime}$, etc., concur.

Chord $\mathrm{M}_{\mathrm{c}} \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime}$ is $\mathrm{H}_{\mathrm{c}} \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime}$ and $\cdot \cdot \perp$ to $\mathrm{M}_{\mathrm{a}} \mathrm{M}_{\mathrm{b}}$. This is true because $\angle \mathrm{H}_{\mathrm{c}}$ $\mathrm{M}_{\mathrm{c}} \mathrm{H}_{\mathrm{e}}{ }^{\prime \prime \prime}$ is a right \angle.

The Simson's line of H_{c} will be this chord $\mathrm{M}_{\mathrm{c}} \mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime \prime}$, the Simson's line of $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime}$ will pass through E , the foot of this altitude, and the Simson's line of $\mathrm{H}_{\mathrm{c}^{\prime \prime}}$ will be side $M_{a} M_{b}$ since it is a point opposite the vertex M_{c}.

So, also, the Simson's lines of $\mathrm{M}_{\mathrm{b}}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime}$ and $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime \prime}$ will concur in R , and the Simson's lines of $\mathrm{M}_{\mathrm{a}}, \mathrm{H}_{\mathrm{a}}{ }^{\prime \prime}$, and $\mathrm{I}_{\mathrm{a}}{ }^{\prime \prime \prime}$ concur in S .
29. Now ly noticing the lettering and arrangement of (Fig. 17) it will be seen that $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime \prime}, \mathrm{H}_{\mathrm{b}}{ }^{\prime \prime \prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime}$ correspond to $\mathrm{H}_{\mathrm{a}^{\prime}}, \mathrm{H}_{\mathrm{b}}{ }^{\prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime}$ of that figure, and that $\mathrm{H}_{\mathrm{B}}, \mathrm{H}_{\mathrm{b}}$, and H_{c} correspond to $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$, and $\mathrm{C}^{\prime \prime}$ of that figure. Therefore we know at once that the Simson's lines of $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ and H_{c} and of $\mathrm{H}_{\mathrm{a}}{ }^{\prime \prime \prime}$, $\mathrm{H}_{\mathrm{b}}{ }^{\prime \prime \prime}$ and $\mathrm{H}_{\mathrm{c}}{ }^{\prime \prime \prime}$ concur just as in that case by threes in four different points, the point of concurrency of $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ and H_{c} being the ortho-center $\mathrm{S}^{\prime \prime \prime}$ of the triangle formed by the intersection of the Simson's lines of the other three points.
30. Also since $\quad I_{a}{ }^{\prime \prime} H_{b}{ }^{\prime \prime \prime} I I_{r}{ }^{\prime \prime}$ and points H_{a}, H_{b}, and H_{c} bear the same relation to the nine point circle that \angle ABC as points $H_{a^{\prime}}, H_{b^{\prime}}$, and $H_{c}{ }^{\prime}$ do to the circle in Fig. 5, it follows at once that what was true of the Simson's lines of those points is also true of these.

Depending upon this same comparison between Figs. 5 and 9 it follows that the Simson's lines of points A, B and C in Fig. 5 concur at in-center of rt. \triangle $\mathrm{M}_{\mathrm{a}}{ }^{\prime} \mathrm{M}_{\mathrm{b}^{\prime}} \mathrm{M}_{\mathrm{c}} \ldots$.
31. Now let us prove that $\mathrm{S}^{\prime \prime}$ (Fig. 5), the point of concurrency of Simson's lines of $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}, \mathrm{C}^{\prime \prime}$, is also the in-center of $\triangle \mathrm{M}_{\mathrm{a}^{\prime}} \mathrm{M}_{\mathrm{b}^{\prime \prime}} \mathbf{M}_{\mathrm{c}^{\prime \prime}}$.

We have already proven that the Simson's lines of $H_{a^{\prime}}, H_{b}{ }^{\prime}$ and $\mathrm{II}_{\mathrm{c}}{ }^{\prime}$ form a Simson triangle $\mathrm{I}^{\prime} \not Y^{\prime}$, of which the Simson's lines of $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$ are the altitudes, and that is $\mathrm{XY} /$, is equivalent to $\angle \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ with their sides respectively. Now, since H_{a}, H_{b} and H_{c} are the midpoints of the sides of $\triangle X Y \%$,
$H_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}$ will be equal in every respect and similarly placed to $\triangle \mathrm{M}_{\mathrm{a}^{\prime \prime}} \mathrm{M}_{\mathrm{b}}, \mathrm{M}_{\mathrm{c}}{ }^{\prime \prime}$. We have also proven H to be the in-center of this $<\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}$. Again, since the Simson's lines of $A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ bisect $A^{\prime \prime} H, B^{\prime \prime} H$ and $C^{\prime \prime} H$, respectively, it is
clear that if $\triangle \mathrm{XYZ}$ were to be given the rank of $\mathrm{rt} . \angle \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ and a new one were to be formed from it, as it is formed from $\angle \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$, then the point $\mathrm{S}^{\prime \prime}$ would fall upon H. Therefore, since H is the in-center of $\triangle H_{a} H_{b} H_{c}, S^{\prime \prime}$ must be the in-center of $\triangle \mathbf{M}_{a^{\prime \prime}} \mathbf{M}_{b^{\prime \prime}} \mathbf{M}_{c^{\prime \prime}}$.

Therefore we see that the six Simson's lines, three with reference to one \triangle and three with reference to the other, meet in the same point.
32. This, at the same time, establishes another even more interesting proposition, namely : If the Simson's lines of the vertices of a first _ with reference to a second \triangle concur in a point $S^{\prime \prime}$, then the Simson's lines of the vertices of the second \triangle with reference to the first \triangle concur in the same point $S^{\prime \prime}$.

The broad scope covered by this proposition would enable me to double in number the points of concurrency of Simson's lines, but there would be little benefit in merely pointing them out, as the interested reader can easily see them for himself.

A Bibliography of Foundations of Geometry. By Morton Clark Bradley.

Euclid's treatment of parallels and angles and his definitions and axioms-particularly his twelfth-are the points of controversy that cause the most discussion. For nearly twenty centuries Euclid's work remained unquestioned. Since John Kepler's day, howerer, there hare been new theories constantly adranced, theories built on axioms and definitions, a part of which, at least, are different from those of Euclid. The most important of the non-Euclideans are John Bolyai, Lobatschevski, Helmholtz, Riemann, Clifford, Henrici, Caley, Sylvester and Ball. The most prominent exponent of the non-Euclidean ideas in this country is Prof. Geo. Bruce Halsted, of Texas University. These mathematicians hold that Euclid's twelfth axiom is not, strictly speaking, an axiom-that it is not "a self-evident and necessary truth," but that it requires demonstration. They claim, too, that his definitions are not sufficient nor necessarily intelligible. Some of these men hare built up new theories upon their substituted axioms and definitions, retaining those of Euclid that fit their theories. A few of these "reform" works are mere quibbles on words, but others deserve the serious consideration of all interested in pure geometry.

The list following is a complete list of English references to be found in the mathematical library of the University of Indiana or in the private-

