Selecting as invariants Q_{m} and $H_{m}=\frac{1+1 / \mathrm{m}}{Q_{\mathrm{m}}}$, and restoring the variables $x_{i} y_{i}$, we have

$$
\mathrm{Q}_{\mathrm{m}}=\frac{|12 \mathrm{~m}|}{|124|}: \frac{|13 \mathrm{~m}|}{|134|}, \quad \mathrm{H}_{\mathrm{m}}=\frac{|124|}{|12 \mathrm{~m}|}: \frac{|234|}{|23 \mathrm{~m}|} .
$$

The forms of Q and H show that the general projective group leaves invariant the cross-ratios of five points.

Differential Invariants Derived from Point-Invariants.

By Dayid A. Rothrock.

In an accompanying article concerning Point-Invariants, the writer has shown how a group

$$
\mathbf{X}_{\mathrm{k}} \mathrm{f} \equiv \xi_{\mathrm{k}}(\mathrm{x}, \mathrm{y}) \frac{d \mathrm{f}}{d \mathrm{x}}+\eta_{\mathrm{k}}(\mathrm{x}, \mathrm{y}) \frac{d \mathrm{f}}{d y}, \quad(\mathrm{k}=1 \ldots \mathrm{r})
$$

may be extended to include the increments of the coördinates of n points. The members of a group may be extended in a different manner, and indeed so as to include the increments of

$$
\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} \mathbf{y}}{d x^{3}} \ldots \ldots
$$

For example, the group $X_{k} f$ gives to x and y the increments

$$
\delta \mathbf{x}=\xi_{\mathrm{k}} \delta \mathrm{t}, \delta \mathrm{y}=\gamma_{\mathrm{k}} \delta \mathrm{t},
$$

and to $y^{\prime}-\frac{d y}{d x}$, the increment

$$
\delta \mathrm{y}^{\prime} \mathrm{l}=\frac{d \mathrm{x} \cdot \delta d \mathrm{y}-d \mathrm{y} \cdot \delta \mathrm{dx}}{d \mathrm{x}^{2}}=\frac{d \eta_{\mathrm{k}}-\mathrm{y}^{\prime} d_{\mathrm{k}}^{5}}{d \mathrm{x}} \delta \mathrm{t}=\eta_{\mathrm{k}}^{\prime} \delta \mathrm{t} .
$$

Similarly, $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ receives the increment

$$
\delta y^{\prime \prime}=\frac{d \eta^{\prime} \mathrm{k}-\mathrm{y}^{\prime \prime} d \sum_{\mathrm{k}}}{d \mathrm{x}} \delta \mathrm{t} \equiv \eta^{\prime \prime} \mathrm{k} \delta \mathrm{t},
$$

and in general

$$
\delta \mathbf{y}^{(\mathrm{m})}=\frac{d \eta_{\mathrm{k}}^{(\mathrm{m}-1)}-\mathrm{y}^{\mathrm{m}} d \overline{\mathrm{y}}_{\mathrm{k}}}{d \mathrm{x}} \delta \eta_{\mathrm{k}}^{(\mathrm{m})} \hat{\mathrm{t}} \mathrm{t} .
$$

The group $X_{k} f$ so extended becomes

Lie has shown that the extended transformations $\mathrm{X}_{\mathrm{k}}{ }^{(m)} \mathrm{f}$ form an r - parameter group since the birucket relations

$$
\begin{align*}
& \left(\mathrm{X}_{\mathrm{i}}^{\mathrm{m}}, \mathrm{X}_{\mathrm{k}}{ }^{m}\right)=\mathrm{X}_{\mathrm{i}}^{(\mathrm{m})}\left(\mathrm{X}_{\mathrm{k}}^{(\mathrm{m})} \mathrm{f}\right)-\mathrm{X}_{\mathrm{k}}^{(\mathrm{m})}\left(\mathrm{X}_{\mathrm{i}}^{(\mathrm{m})} \mathrm{f}\right)= \\
& {\underset{1}{\mathrm{~T}}}_{\mathrm{T}} \mathrm{C}_{\mathrm{iks}} \mathrm{X}_{\mathrm{s}}^{(\mathrm{m})} \mathrm{f} \tag{1}
\end{align*}
$$

exist. But when relations (1) hold, the equations

$$
\mathbf{X}_{k}^{m)} f \quad=E_{k} \frac{d i}{d x}-1 / k \frac{d i}{d y}+{\underset{m}{1}}_{i / k i)} \frac{d i}{d y^{(i}}=0
$$

are known to form a complete system of linear partial differential equations in $2+m$ rariables. This system has at least $2-m-r$ independent solutions which are defined as the differential invariants of the group $\mathrm{X}_{\mathrm{k}} \mathrm{i}$.

In Lie's paper cited above it is shown that if two independent differential invariants le known, all others may be found by differentiation. For example, if the two fundamental differential invariants be σ_{1}, ω_{2}, then

$$
\sigma_{3}=\frac{d \omega_{2}}{d \omega_{1}}, o_{4}=\frac{d o_{3}}{d o_{1}}, \ldots \ldots
$$

The fundamental differential invariants $\omega_{1}\left(x, y, y_{1}, y_{2}, \ldots y_{r--}\right), \varphi_{2}(x$, $y, y_{1}, y_{2}, \ldots y_{r}$, of an r-parameter group may, in general, be obtained from a somewhat different point of view, and indeed withont a knowledge of the form of the group itself, provided the point-invariants of the group he known.

Let us suppose the points of a point-invariant $\theta\left(x, y, x^{[2]}, y^{[2]} \ldots\right)$ to lie upon a curve $x \quad f_{1}(t), y \quad f_{2}(t)$,
where $f_{1}, f_{\text {_ }}$ are analytic functions of the parameter t. We seek the wature of the invariants when two or more points upon this curve approach coincidence. If x, y be a point for $t-t$, , then a point $x^{(2)}, y^{(2)}$, ultimately coincident with x, y, will be given by

$$
x(2)-x+x^{\prime} d t \ldots x^{\prime \prime} \underset{2}{d t^{2}}+\ldots, y^{(2)}=y+y^{\prime} d t+y^{\prime \prime} \frac{d t^{2}}{2} \ldots, \quad \dagger
$$

[^0]and similarly with other parameters for any number of consecutive points. On substituting these series expansions of $\mathbf{x}(\mathbf{i}), \underline{y}(\mathrm{i}) \mathrm{in} \theta$, we shall evidently obtain an invariant function. If now θ be capable of expansion in a power-series with regard to $d t, d r, \ldots$, we shall have the coefficients, $I_{1}\left(x, y, x^{\prime}, y^{\prime}, \ldots\right), I_{2}\left(x_{1} y\right.$, $\left.x^{\prime}, y^{\prime}, \ldots\right), \ldots$, of the powers of $d t, d r, \ldots$ separately invariant, since the parameters t, r, \ldots are arbitrary. In $I_{1}, I_{2}, I_{3} \ldots$ we may express $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \ldots$ as functions of $y_{1}, y_{2}, \ldots x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \ldots \ldots \ldots$. If then $I_{1}, I_{2}, I_{3}, \ldots$ may be so combined as to eliminate the differentials $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}, \mathrm{x}^{\prime \prime \prime}, \ldots$, we shall obtain invariant functions, $\phi_{1}\left(\mathbf{x}, \mathbf{y}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots\right), \phi_{2}, o_{3}, \ldots$, which are differential invariants in the sense already defined.

The calculation of differential invariants by the method just outlined is sometimes quite laborious. Below is given a consideration of some of the more characteristic groups.

SECTION I. DIFFERENTIAL INYARIANTS DETERMINED BY TWO POINTS.

In the present section are computed the differential invariants for some of the more simple groups of the plane, and indeed for such as have point-invariants for two distinct points. Only two differential invariants have been determined for each group ; all others may be found from these by differentiation.*

1. The group

has the point-invariants $x(i), \psi_{2}=y-y(2)$. Expressing $y(2)$ in terms of a parameter t, we have ultimately

$$
d_{2}-y-\left(y+y^{\prime} d t+y^{\prime \prime} \frac{d t^{2}}{2}+\ldots .\right)
$$

Since $d t$ is arbitrary, $y^{\prime}, y^{\prime \prime}, \ldots$ are singly invariant.

$$
y^{\prime} \text { - } x^{\prime} y_{1} \text {, but } x^{\prime} \text { as well as } x \text { is invariant, hence } y_{1} \text { is invariant, and }
$$ our differential invariants may be written

$$
\phi_{1}=\mathrm{x}, \phi_{2}=\mathrm{y}_{1} .
$$

2. The group

$$
p, q
$$

has the point-invariants

$$
\mathbf{u}_{2}=\mathbf{x}-\mathbf{x}^{(2)}, \mathrm{r}_{2}=\mathrm{y}-\mathbf{y}^{(2)} .
$$

Hence, we have

$$
u_{2}=x-\left(x+x^{\prime} d t+x^{\prime \prime} \frac{d t^{2}}{2}+\ldots\right), v_{2}-y-\left(y+y^{\prime} d t+y^{\prime \prime} \frac{d t^{2}}{2}+\ldots\right)
$$

[^1]which show $x^{\prime}, x^{\prime \prime}, \ldots . . y^{\prime}, y^{\prime \prime}, \ldots$ to be invariant. But $y^{\prime}=y_{1} x^{\prime}, y^{\prime \prime}=$ $y_{2}\left(x^{\prime}\right)^{2}+y_{1} x^{\prime \prime}$; hence, y_{1}, y_{2} must each be invariant.
$$
\therefore \phi_{1}=y_{1}, o_{2}=y_{2} .
$$
3. The point-invariants of the group
$$
q, x p+y q
$$
are
$$
u_{2}=\frac{x(2)}{x}, \mathbf{v}_{2}=\frac{y-y^{(2)}}{\mathbf{x}}
$$

Introducing the series expansion of $x^{(2)}, y^{(2)}$,

$$
\begin{aligned}
& \mathrm{u}_{2}=\left(\mathrm{x}+\mathrm{x}^{\prime} d \mathrm{t}+\mathrm{x}^{\prime \prime} \frac{d \mathrm{t}^{2}}{2}+\ldots\right): \mathrm{x} \\
& \mathrm{r}_{2}=\left\{\mathrm{y}-\left(\mathrm{y}+\mathrm{y}^{\prime} d \mathrm{t}+\mathrm{y}^{\prime \prime} \frac{d \mathrm{t}^{2}}{2}+\ldots\right)\right\}: x
\end{aligned}
$$

H_{2} shows the ratios

$$
\begin{equation*}
\frac{x^{\prime}}{x}, \frac{x^{\prime \prime}}{x}, \frac{x^{\prime \prime \prime}}{x} \tag{1}
\end{equation*}
$$

to be invariant, while v_{2} requires the invariance of

$$
\begin{gathered}
\frac{y^{\prime}}{x}, \frac{y^{\prime \prime}}{x}, \frac{y^{\prime \prime \prime}}{x}, \ldots \ldots \\
I_{1}=\frac{y^{\prime}}{x}=\frac{y_{1} x^{\prime}}{x} ;
\end{gathered}
$$

hence y_{1} is invariant on account of (1).

$$
I_{2}=\frac{y^{\prime \prime}}{x}=y_{2}\left(x^{\prime}\right)^{2}+y_{1} x^{\prime \prime}, \text { or } I_{2}-o_{2} \frac{x^{\prime \prime}}{x}=x y_{2}\left(\frac{x^{\prime}}{x}\right)^{2}
$$

Therefore, $\varphi_{1}=y_{1}, \varphi_{2}=\mathbf{x} y_{2}$.
4. The group

$$
p, q, x p+y q
$$

has the point-invariants

$$
n_{2}-\frac{y-y^{(2)}}{x-x^{(2)}}, v_{3}=\frac{x-x^{(3)}}{x-x^{(2)}}
$$

One differential invariant may be computed from u_{2} alone, but a second can not be had on account of impossibility of the elimination of the parameters. We therefore consider three points determined by t, r.

$$
\begin{aligned}
& u_{2}=\left\{y-\left(y+y^{\prime} d t+y^{\prime \prime} \frac{d t^{2}}{2}+\ldots .\right)\right\}:\left\{x-\left(x-x^{\prime} d t+x^{\prime \prime} \frac{d t^{2}}{2}+\ldots\right)\right\} \\
& =\frac{y^{\prime}}{x^{\prime}}+\frac{d t}{2}\left(\frac{y^{\prime \prime}}{x^{\prime}}-\frac{y^{\prime} x^{\prime \prime}}{\left(x^{\prime}\right)^{2}}\right)+\frac{d t^{2}}{2}\left(\begin{array}{l}
y^{\prime}\left(x^{\prime \prime}\right)^{2} \\
2\left(x^{\prime}\right)^{3}
\end{array} \frac{y^{\prime} x^{\prime \prime \prime}}{3\left(x^{\prime}\right)^{2}}-\frac{y^{\prime \prime} x^{\prime \prime}}{2\left(x^{\prime}\right)^{2}}+\frac{y^{\prime \prime}}{3 x^{\prime}}\right)+\ldots .
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{3} & =\left\{x-\left(x+x^{\prime} d r+x^{\prime \prime} \frac{d r^{2}}{2}+\ldots .\right)\right\}:\left\{x-x\left(+x^{\prime} d t+x^{\prime \prime} \frac{d t^{2}}{2}+\ldots .\right\}\right. \\
& =\frac{d r}{d t}-\frac{d r}{2} \cdot \frac{x^{\prime \prime}}{x^{\prime}}-\frac{d r^{2}}{4}\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{2}+d t d r\left\{\left(\frac{x^{\prime \prime}}{2 x^{\prime}}\right)^{2}-\frac{x^{\prime \prime \prime}}{6 x^{\prime}}\right\}+\ldots \ldots .
\end{aligned}
$$

These functions show

$$
\begin{gathered}
\frac{x^{\prime \prime}}{x^{\prime}}, I_{1}=\frac{y^{\prime}}{x^{\prime}}=y_{1}, I_{2}=\frac{y^{\prime \prime}}{x^{\prime}}-\frac{y^{\prime} x^{\prime \prime}}{\left(x^{\prime}\right)^{2}}=y_{2} x^{\prime} \text {, and } \\
I_{3}=\frac{y^{\prime \prime \prime}}{3 x^{\prime}}-\frac{y^{\prime \prime} x^{\prime \prime}}{2\left(x^{\prime}\right)^{2}}-\frac{y^{\prime} x^{\prime \prime \prime}}{3\left(x^{\prime}\right)^{2}}+\frac{y^{\prime}\left(x^{\prime \prime}\right)^{2}}{2\left(x^{\prime}\right)^{3}}=\frac{y_{3}\left(x^{\prime}\right)^{3}}{3}+\frac{y_{2} x^{\prime \prime}}{2}
\end{gathered}
$$

to be invariant. Eliminating the parameters $x^{\prime}, x^{\prime \prime}$, we have

$$
\begin{gathered}
\left.\left\{\mathrm{I}_{3} \div \mathrm{I}_{2}-\frac{\mathrm{x}^{\prime \prime}}{2 \mathrm{x}^{\prime}}\right\}\right\} \div I_{2}=\frac{y_{3}}{3\left(y_{2}\right)^{2}} \\
\therefore \phi_{1}=y_{1}, \phi_{2}=\frac{y_{3}}{y_{2}^{2}} .
\end{gathered}
$$

SECTION II. DIFFERENTIAL INVARIANTS DETERNINED BY THREE OR MORE POINTS.

In the case of the more complex groups it is necessary to bring into consideration three, four, five, points, and consequently employ additional parameters, r, s, \ldots.
5. For three points, the group

$$
p, 4, x p+c y q
$$

possesses the point-invariants

$$
u=\frac{y-y^{(2)}}{\left(x-x^{(2)}\right)^{c}}, \quad \nabla_{3}=\frac{x-x^{(3)}}{x-x^{(2)}}, \quad W_{3}=\frac{y-y^{(3)}}{y-y^{(2)}} .
$$

Expressing u, in series expansion for $x^{(2)}, y^{(2)}$, we hare

$$
\begin{aligned}
u= & \frac{y-\left(y+y^{\prime} d t+1 y^{\prime \prime} \frac{d t^{2}}{2}+.\right)}{\left\{x-\left(x+x^{\prime} d t+x^{\prime \prime} \frac{d t^{2}}{2}+\ldots\right)\right\}^{c}} \\
= & \frac{k}{\left(x^{\prime}\right)^{c}}\left\{y^{\prime}+\frac{d t}{2}\left\{y^{\prime \prime}-c y^{\prime} \frac{x^{\prime \prime}}{x^{\prime}}\right\}+\right. \\
& \left.\quad d t^{2}\left[\frac{y^{\prime \prime \prime}}{6}-\frac{c y^{\prime \prime}}{4} \cdot \frac{x^{\prime \prime}}{x^{\prime}}+y^{\prime}\left(l\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{2}-\frac{c}{6} \frac{x^{\prime \prime \prime}}{x^{\prime}}\right)\right] \ldots\right\}
\end{aligned}
$$

The series expansion of r_{3} is identical with that of r_{3} in 4 above. Hence, the invariant functions may be written

$$
\begin{aligned}
& \quad \frac{x^{\prime \prime}}{x^{\prime}}, \frac{x^{\prime \prime \prime}}{x^{\prime}}, \frac{x^{i v}}{x^{\prime}}, \ldots, I_{1}=\frac{y^{\prime}}{\left(x^{\prime}\right)^{c}}=\frac{y_{1}}{\left(x^{\prime}\right)^{c}-1}, I_{2}=\frac{y^{\prime \prime}}{\left(x^{\prime}\right)^{c}}-c y^{\prime} \frac{x^{\prime \prime}}{\left(x^{\prime}\right)^{c+1}}= \\
& \frac{y_{2}}{\left(x^{\prime}\right)^{\prime \prime-2}}-h . I_{1} \frac{x^{\prime \prime}}{x^{\prime \prime}}, \\
& I_{3}=\frac{y^{\prime \prime \prime}}{6\left(x^{\prime}\right)^{c}}-\frac{c y^{\prime \prime}}{4\left(x^{\prime}\right)^{\prime \prime}} \cdot \frac{x^{\prime \prime}}{x^{\prime}}+\frac{y^{\prime}}{\left(x^{\prime}\right)^{c}}\left\{l\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{2}-\frac{c}{6} \cdot \frac{x^{\prime \prime \prime}}{x^{\prime}}\right\} \\
& =k_{1} \frac{y^{\prime}}{\left(x^{\prime}\right)^{c-3}}+k_{2} x^{\prime \prime} \cdot \frac{y^{\prime}}{\left(x^{\prime}\right)^{e-2}}+\left\{k_{3}, \frac{x^{\prime \prime \prime}}{x^{\prime}}+k_{4}\left(x^{\prime \prime} x^{2}\right) \frac{y_{1}}{\left(x^{\prime}\right)^{c-1}}\right.
\end{aligned}
$$

From these relations follows at once the invariance of

$$
\frac{y_{1}}{\left(\mathrm{x}^{\prime}\right)^{c}-1}, \frac{y_{2}}{\left(\mathrm{x}^{\prime}\right)^{c}-2}, \frac{y_{3}}{\left(\mathrm{x}^{\prime}\right)^{c}-3} .
$$

By eliminatiny x^{\prime}, we have

$$
w_{1}=\frac{y_{2}}{y_{1}^{\frac{c}{c-1}}}, o_{2}-\frac{y_{3}}{y_{1}^{c-1}} .
$$

fi. 1. y_{q} leares invariant x and $\mathrm{r}_{3}-\frac{y-y^{(i)}}{y-y^{(2)}}$. Expanding v_{3} in series,

$$
\begin{aligned}
& v_{3}-\left\{y-\left(y+y^{\prime} d r+y^{\prime \prime} \frac{\mathrm{d}^{2}}{2} \ldots\right)^{\prime}:\left\{y=\left(y+y^{\prime} \mathrm{dt}+y^{\prime \prime} \frac{\mathrm{dt}^{2}}{2}+\ldots\right)\right\}\right.
\end{aligned}
$$

 are also infariant.

$$
\begin{gathered}
\mathrm{I}_{1}-y^{\prime \prime} y^{\prime}=\frac{y_{2}}{y_{1}} \mathrm{x}^{\prime}+\frac{\mathrm{x}^{\prime \prime}}{\mathrm{x}^{\prime}} . \\
\therefore w_{1}=\mathrm{x}, o_{2}=\frac{y_{2}}{y_{1}} .
\end{gathered}
$$

7. The group

$$
4.9 \mathrm{q}, \mathrm{p}
$$

has point-invariants

$$
n_{2}=x-x^{(2)}, v_{;}=\frac{y-y^{(3)}}{y-y^{(2)}} .
$$

We have, as in 6 , the invariant functions

$$
\begin{gathered}
x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \ldots, I_{1}-\frac{y^{\prime \prime}}{y^{\prime}},=\frac{y_{2} x^{\prime}}{y_{1}}+\frac{x^{\prime \prime}}{x^{\prime}}, \\
I_{2}=\frac{y^{\prime \prime \prime}}{y^{\prime}}=\frac{y_{3}\left(x^{\prime}\right)^{2}}{y_{1}}+3 \frac{y_{2} x^{\prime \prime}}{y^{\prime}}+\frac{x^{\prime \prime \prime}}{x^{\prime}} \\
\cdot \cdot ⿻_{1}=\frac{y_{2}}{r_{1}}, 0_{2}=\frac{y_{3}}{y_{1}} .
\end{gathered}
$$

8. The point-invariants of the four-parameter group
are

$$
\mathbf{u}_{3}=\frac{p, x p, q, y q}{x-x^{(3)}}, \mathrm{x}_{3}=\frac{y-y^{(3)}}{y-y^{(2)}} .
$$

The series expansion for $u_{3}, r_{:}$in powers of $d t, d r$ will be identical with those for r_{3} in 4 and 7 , respectirely. Hence, we have the invariant differential functions

$$
\begin{equation*}
\frac{x^{\prime \prime}}{x^{\prime \prime}}, \frac{x^{\prime \prime \prime}}{x^{\prime}}, \frac{x^{i v}}{x^{\prime}} \tag{1}
\end{equation*}
$$

and

$$
\begin{gathered}
\mathrm{I}_{1}=\frac{y^{\prime \prime}}{y^{\prime}}=\frac{y_{2} x^{\prime}}{y_{1}}+\frac{x^{\prime \prime}}{x^{\prime \prime}}, I_{2}=\frac{y^{\prime \prime \prime}}{y^{\prime}}=\frac{y_{3}\left(x^{\prime}\right)^{2}}{y_{1}}+3^{y_{2} x^{\prime}} y_{1} \cdot \frac{x^{\prime \prime}}{x^{\prime}}+\frac{x^{\prime \prime \prime}}{x^{\prime}} \\
I_{3}=\frac{y^{i v}}{y^{\prime}}=\frac{y_{4}\left(x^{\prime}\right)^{3}}{y_{1}}+\frac{6 \cdot \frac{y}{y^{\prime}\left(x^{\prime}\right)^{2}}}{y_{1}} \cdot \frac{x^{\prime \prime}}{x^{\prime}}+\frac{y_{2} x^{\prime}}{y_{1}}\left\{3\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{2}+4 \frac{x^{\prime \prime \prime}}{x^{\prime}}\right\}+\frac{x^{i v}}{x^{\prime}} .
\end{gathered}
$$

Hence, on account of (1), we have the infariant functions

$$
\frac{y_{2} x^{\prime}}{y_{1}}, \frac{y_{3}\left(x^{\prime}\right)^{2}}{y_{1}}, \frac{y_{4}\left(x^{\prime}\right)^{3}}{y_{1}}
$$

from which it is only necessary to eliminate x^{\prime} in order to obtain our required differential invariants:

$$
\iota_{1}=\frac{\mathbf{y}_{1} \mathbf{y}}{\mathbf{y}_{2}^{2}}, o_{2}=\frac{\mathbf{y}_{4} \mathbf{y}_{1}^{2}}{\mathbf{y}_{2}^{3}}
$$

9. The general projective group in one variable

$$
q, y q, y^{2} q
$$

leaves invariant x and $\mathrm{R}=\frac{y^{(2)}-y^{(4)}}{y-y^{(4)}}: \frac{y^{(2)}-y^{(3)}}{y-y^{(3)}}$.
Using t, r, s as auxiliary variables, R takes the form, for ultimately coincident points

$$
\mathbf{R}=\frac{1-u}{1-\beta}=(1-a)\left(1+\beta+\beta^{2}+\ldots\right)
$$

where $\left.a-y^{\prime} d t+y^{\prime \prime} \frac{d t^{2}}{2}-\ldots.\right):\left(y^{\prime} d s+y^{\prime \prime} \frac{\mathrm{d}^{2}}{\underline{2}}+\ldots.\right)$, and

$$
3=\left(y^{\prime} \mathrm{dt}+5^{\prime \prime} \frac{\mathrm{dt}^{2}}{2}+\ldots .\right):\left(y^{\prime} \mathrm{dr}+y^{\prime \prime} \frac{\mathrm{dr}^{2}}{2}+\ldots .\right)
$$

Arranging R according to positive powers of $\mathrm{dt}, \mathrm{dr}, \mathrm{d}$, and omitting superfluous terms, we find

$$
\begin{gathered}
R=\ldots . d t(d s-d r)\left\{\frac{y^{\prime \prime \prime}}{6 y^{\prime}}-\left(\frac{y^{\prime \prime}}{2 y^{\prime}}\right\}^{2}\right\}+\ldots . \\
+d t\left(d s^{2}-d r^{2}\right)\left\{\frac{y^{i v}}{24 y^{\prime}}-\frac{y^{\prime \prime} y^{\prime \prime \prime}}{6\left(y^{\prime}\right)^{2}}+\left\{\frac{y^{\prime \prime}}{2 y^{\prime}}\right\}^{3}\right\}+\ldots \\
+\mathrm{dt}(\mathrm{ds}-\mathrm{dr})\left\{\frac{y^{v}}{120 y^{\prime}}-\frac{y^{\prime \prime}}{24\left(y^{\prime}\right)^{\prime}}-\left(\frac{y^{\prime \prime \prime}}{6 y^{\prime}}\right\}^{2}-\left\{\frac{y^{\prime \prime}}{2 y^{\prime}}\right\}^{4}+\frac{\left(y^{\prime \prime \prime}\right)^{2} y^{\prime \prime \prime}}{8\left(y^{\prime}\right)^{3}}\right\}+\ldots
\end{gathered}
$$

From these coefficients me may determine the differential invariants.

$$
\begin{aligned}
& \phi_{1}=x . \\
& I_{1}=\frac{y^{\prime \prime \prime}}{6 y^{\prime}}-\left(\frac{y^{\prime \prime \prime}}{2 y^{\prime}}\right)^{2}=\frac{\left(x^{\prime}\right)^{2}}{12} \frac{2 y_{1} y^{\prime}-3 y_{2}^{2}}{y_{1}{ }^{2}}+\frac{x^{\prime \prime \prime}}{6 x^{\prime}}-\left(\frac{x^{\prime \prime}}{2 x^{\prime}}\right)^{2}, \\
& \therefore \varphi_{2}=\frac{2 y_{1} y-3 y_{2}^{2}}{y_{1}^{2}} \text {. } \\
& \left.I_{2}-\frac{\left(x^{\prime}\right)}{y_{4}} \left\lvert\, \frac{y_{1}}{y_{1}}-\frac{4 y_{2} y_{3}}{y_{1}^{2}}-\frac{3 y_{2}^{3}}{y_{1}^{3}}\right.\right\}+\frac{x^{\prime} x^{\prime \prime}}{24} o_{2}+I_{2}(x) \text {, } \\
& \therefore 0 \quad \frac{y_{1}}{y_{1}}-4 \frac{y_{2} y_{1}}{y_{1}{ }^{2}}+3 \frac{y_{2}^{3}}{y_{1}{ }^{3}} . \\
& \left.I_{3}=\frac{\left(x^{\prime}\right)^{1}}{120} \left\lvert\, \frac{y}{y_{1}}-j \frac{y_{2} y_{1}}{y_{1}^{2}}-4 \frac{y_{1}^{2}}{y_{1}^{2}}+17 \frac{y_{2}^{2} y}{y_{1}}-y \frac{y_{2}^{4}}{y_{1}^{2}}\right.\right\}+ \\
& \mp \frac{\left(x^{\prime}\right)^{2} x^{\prime \prime}}{24} \cdot 0-\frac{\left(x^{\prime}\right)^{4}}{720} \omega_{2}^{2}-\frac{x^{\prime} x^{\prime \prime \prime}}{72} \delta_{2}-I_{3}(x), \\
& \therefore \delta_{4}=\frac{y_{5}}{y_{1}}-5 \frac{y_{2} y_{1}}{y_{1}^{2}}-+\left(\frac{y}{y_{1}}\right)^{2}+17 \frac{y_{1}^{2} y}{y_{1}^{3}}-9\left(\frac{y_{2}}{y_{1}}\right)^{4} .
\end{aligned}
$$

In some of the following paragraphs we shall need the forms I_{2}, I_{3}, here computed. Incidentally we have computed the lifferential invariants ϕ_{3}, φ_{4}.
10. The group

$$
\mathrm{u}, \mathrm{y} \mathrm{q}, \mathrm{y}^{2} \mathrm{q}, \mathrm{p}
$$

has the same differential inrariant- as : above, with the exception of ϕ_{1}, which must be 1 mitted. We shall hare, therefure, $\phi_{2}, \rho_{3}, \circ_{4}$, as defined abore.
11. By the group

$$
q, y q, s^{2} q, p, x p
$$

the functions I_{1}, I_{2}, I_{3} of 9 remain invariant, also $\frac{x^{\prime \prime}}{x^{\prime}}, \frac{x^{\prime \prime \prime}}{x^{\prime}}, \frac{x^{i v}}{x^{\prime}}, \ldots$ as in 8 . These invariant functions must be so manipulated that the x 's are either eliminated or made to appear as ratios $\frac{x^{\prime \prime}}{x^{\prime \prime}} \frac{x^{\prime \prime \prime}}{x^{\prime \prime}}, \ldots$ Since $I_{1}(x), I_{2}(x) \ldots$ are already functions of $\frac{x^{\prime \prime}}{x^{\prime}}, \frac{x^{\prime \prime \prime}}{x^{\prime}}, \ldots$, we may omit these, and write simply

$$
\begin{gathered}
\mathrm{J}_{1}=\dot{b}_{2}\left(\mathrm{x}^{\prime}\right)^{2}, \mathrm{~J}_{2}=\phi_{3}\left(\mathrm{x}^{\prime}\right)^{3}+\phi_{2} \mathrm{x}^{\prime} \mathrm{x}^{\prime \prime} \\
\mathrm{J}_{3}=\rho_{4} \frac{\left(\mathrm{x}^{\prime}\right)^{4}}{5}+o_{3}\left(x^{\prime}\right)^{2} x^{\prime \prime}+o_{2} \frac{2\left(\mathrm{x}^{\prime}\right)^{4}}{30}+\phi_{2} \frac{\mathrm{x}^{\prime} \mathrm{x}^{\prime \prime \prime}}{3} .
\end{gathered}
$$

Eliminating $x^{\prime}, \mathrm{x}^{\prime \prime}, \ldots$,

$$
\begin{gathered}
\left(J_{2}: J_{1}-\frac{x^{\prime \prime}}{x^{\prime}}\right):\left(J_{1}\right)^{\frac{1}{2}}=\frac{o_{3}}{\left(o_{2}\right)^{\frac{3}{2}}}-\frac{\frac{y_{4}}{y_{1}}-\frac{4 y_{2} y_{3}}{y_{1}{ }^{2}}+3\left(\frac{y_{2}}{y_{1}}\right)^{3}}{\left\{\frac{2 y_{3}}{y_{1}}-3\left(\frac{y_{2}}{y_{i}}\right)^{2}\right\}^{\frac{3}{2}}}=\Phi_{1} . \\
J_{3}: J_{1} \equiv \frac{o_{4}}{\phi_{2}} \cdot \frac{\left(x^{\prime}\right)^{2}}{5}+\frac{\rho_{3}}{\varphi_{2}} x^{\prime}\left(\frac{x^{\prime \prime}}{x^{\prime}}\right\}+o_{2} \frac{\left(x^{\prime}\right)^{2}}{30}+\frac{x^{\prime \prime \prime}}{3 x^{\prime}} \\
=\frac{\phi_{4}}{\phi_{2}} \cdot \frac{\left(x^{\prime}\right)^{2}}{5}+\left(J_{2}: J_{1}-\frac{x^{\prime \prime}}{x^{\prime}}\right\} \frac{x^{\prime \prime}}{x^{\prime}}+\frac{J_{1}}{30}+\frac{x^{\prime \prime \prime}}{3 x^{\prime}} .
\end{gathered}
$$

Hence, $\mathbf{A} \equiv \frac{0_{t}}{\phi_{2}}\left(\boldsymbol{x}^{\prime}\right)^{2}$ is invariant.

$$
A: J_{1}=\frac{\phi_{t}}{\phi_{2}{ }^{2}}=\frac{\frac{y_{5}}{y_{1}}-5 \frac{y_{2} y_{4}}{y_{1}{ }^{2}}-4\left(\frac{y_{3}}{y_{1}}\right)^{2}+17 \frac{y_{2}^{2} y_{3}}{y_{1}{ }^{3}}-9\left(\frac{y_{2}}{y_{1}}\right)^{4}}{\left\{\frac{2 y_{3}}{y_{1}}-3\left(\frac{y_{2}}{y_{1}}\right)^{2}\right\}^{2}}=\Phi_{2} .
$$

Φ_{1}, Φ_{2} are the two fundamental differential invariants.
12. It has been shown that the group

$$
X_{1}^{(x)} \mathfrak{q}, X_{1}(x) \cdot q, X_{3>1}(\mathbf{x}) q \cdot \ldots X_{r}^{(x)} \cdot q
$$

leaves invariant x and the determinant

We shall denote the parameters for $x^{(2)}, x^{(3)} \ldots$ by t, s, \ldots. respectively, and have series expansion for $\mathbf{X}_{\mathbf{i}}\left(\mathrm{X}^{(2)}\right)$ in the form

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{i}}(\mathrm{x}(2))=\mathbf{X}_{\mathrm{i}}\left(\mathrm{x}+\mathrm{x}^{\prime} d \mathrm{t}+\mathrm{x}^{\prime \prime} \frac{\mathrm{dt} \mathrm{t}^{2}}{2}+\mathrm{x}^{\prime \prime \prime} \frac{\mathrm{dt}^{3}}{6}+\ldots\right) \\
& \mathbf{X}_{\mathrm{i}}(\mathrm{x})+\mathbf{X}_{\mathrm{i}}^{\prime}(\mathrm{x}) \cdot \mathrm{x}^{\prime} \mathrm{lt}+\left\{\mathbf{X}_{\mathrm{i}}^{\prime \prime}(\mathbf{x}) \cdot \mathrm{x}^{\prime 2}+\mathbf{X}_{\mathrm{i}}^{\prime}(\mathrm{x}) \cdot \mathrm{x}^{\prime \prime}\right) \frac{\mathrm{d} \mathrm{t}^{2}}{\mathscr{2}}+ \\
& +\left(X_{i}^{\prime \prime \prime \prime}(x) \cdot \mathbf{x}^{\prime \prime}+3 X_{i}^{\prime \prime}(x) \cdot x^{\prime} x^{\prime \prime}+X_{i}(x) \cdot x^{\prime \prime \prime}\right) \frac{d t^{3}}{6}+ \\
& +\left\{\mathrm{X}_{\mathrm{i}}^{1 \nabla}(x) \cdot x^{\prime 1}+6 \mathrm{X}_{\mathrm{i}}^{\prime \prime \prime}(\mathrm{x}) \cdot \mathrm{x}^{\prime 2} \mathrm{x}^{\prime \prime}+3 \mathrm{X}_{\mathrm{i}}(\mathrm{x}) \cdot \mathrm{x}^{\prime \prime 2}+\right. \\
& \left.+4 \mathrm{X}_{\mathrm{i}}^{\prime \prime}(\mathrm{x}) \cdot \mathrm{x}^{\prime} \mathrm{x}^{\prime \prime \prime}+\mathrm{X}_{\mathrm{i}}^{\prime}(\mathrm{x}) \cdot \mathrm{x}^{\mathrm{iv}}\right) \frac{\mathrm{d} t^{4}}{2 t}+
\end{aligned}
$$

with like expansions for $\mathrm{X}_{\mathrm{i}}(\mathrm{x}(3)), \ldots$ in parameters s, \ldots. . Substituting these series expansions for X_{i} in the ahove determinant and subtracting vertical columns in a proper manner, we have

Or disregarding $x^{\prime}, x^{\prime \prime}, \ldots$ which are invariant, and retaining only the elements of lowest degree in dt, $d s, \ldots \ldots$, we have

Since x is also invariant, $\phi^{2}=\frac{d \phi_{1}}{d x}$, which wonld he the above determinant with the last column changed to $\mathbf{y}_{r+2}, \boldsymbol{X}_{1} r+2, \ldots . \boldsymbol{X}_{r} r+2$.
13. $\mathbf{X}_{1 q}, \mathbf{X}_{2^{4}}, \ldots \ldots \mathbf{X}_{r-1^{q}, y}$ leaves invariant x and the ratio
$\phi_{2}: \phi_{1}$, where ϕ_{2}, ϕ_{1} are determinants defined in 12 .
Since x also remains invariant, we may write our differential invariants

$$
\begin{gathered}
\Phi_{1}=\frac{\phi_{2}}{\phi_{1}} \\
\Phi_{2}-\frac{\mathrm{d} \Phi_{1}}{\mathrm{dx}} .
\end{gathered}
$$

14. The special linear group

$$
\mathrm{p}, \mathrm{q}, \mathrm{xq}, \mathrm{xp}-\mathrm{yq}, \mathrm{yp} .
$$

has the point-invariant

$$
\mathrm{D}=\left|\begin{array}{lll}
\mathrm{x} & \mathrm{y} & 1 \\
\mathbf{x}^{(2)} & \mathrm{y}^{(2)} & 1 \\
\mathrm{x}^{(3)} & \mathbf{y}^{(3)} & 1
\end{array}\right| .
$$

Expressing $\mathbf{x}^{(2)}, \mathrm{y}^{(2)} ; \mathrm{x}^{(3)}, \mathrm{y}^{(3)}$ in series expansion in terms of t , s ,

$$
\begin{aligned}
& D=\left|\begin{array}{c}
x \\
x+x^{\prime} d t+x^{\prime \prime} \frac{d t^{2}}{2}+\ldots, y+y^{\prime} d t+y^{\prime \prime} \frac{d t t^{2}}{2}+\ldots, 1 \\
x+x^{\prime} d s+x^{\prime \prime} \frac{d s^{2}}{2}+\ldots, y+y^{\prime} d s+y^{\prime \prime} \frac{d s^{2}}{2}-\ldots ., 1
\end{array}\right| \\
&-I_{1} \frac{d t d s^{2}}{2}+I_{2} \frac{d t d s}{6}+I \frac{d t d s^{4}}{2 t}-1_{4} \frac{d t^{2} d s^{2}}{12}+I_{5} \frac{d t d s^{5}}{120}- \\
&-I_{6} \frac{d t^{2} d s^{4}}{48}+\ldots,
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{x}^{\prime} \mathrm{y}^{\prime \prime}-\mathrm{x}^{\prime \prime} \mathrm{y}^{\prime}=\mathrm{y}_{2}\left(\mathrm{x}^{\prime}\right)^{3}, \\
& \mathrm{I}_{2}=\mathrm{x}^{\prime} \mathrm{y}^{\prime \prime \prime}-\mathrm{x}^{\prime \prime \prime \prime} \mathrm{y}^{\prime}-\mathrm{y}_{3}\left(\mathrm{x}^{\prime}\right)^{ \pm}+3 y_{2}\left(\mathbf{x}^{\prime}\right)^{2} \mathrm{x}^{\prime \prime} \text {, } \\
& \mathrm{I}_{3}=\mathrm{x}^{\prime} \mathrm{y}^{\mathrm{iv}}-\mathrm{x}^{\mathrm{iv}} \mathrm{y}^{\prime}=\mathrm{y}_{4}\left(\mathrm{x}^{\prime}\right)^{5}+6 \mathrm{y}_{3}\left(\mathrm{x}^{\prime}\right)^{3} \mathrm{x}^{\prime \prime}+3 \mathrm{y}_{2} \mathrm{x}^{\prime}\left(\mathrm{x}^{\prime \prime}\right)^{2}+4 y_{2}\left(\mathrm{x}^{\prime}\right)^{2} \mathrm{x}^{\prime \prime \prime} \text {, } \\
& \mathrm{I}_{4}=\mathrm{x}^{\prime \prime \prime} \mathrm{y}^{\prime \prime}-\mathrm{x}^{\prime \prime} \mathrm{y}^{\prime \prime \prime}-y_{2}\left[\left(\mathrm{x}^{\prime}\right)^{2} \mathrm{x}^{\prime \prime \prime}-3 \mathrm{x}^{\prime}\left(\mathrm{x}^{\prime \prime}\right)^{2}\right]-y_{3}\left(x^{\prime}\right)^{3} \mathrm{x}^{\prime \prime} \text {, } \\
& \mathrm{I}_{5}=\mathrm{x}^{\prime} \mathrm{y}^{v}-\mathrm{x}^{8} \mathrm{y}^{\prime}=\mathrm{y}_{5}\left(\mathrm{x}^{\prime}\right)^{6}+10 \mathrm{y}_{4}\left(\mathrm{x}^{\prime}\right)^{4} \mathrm{x}^{\prime \prime}+15\left(\mathrm{x}^{\prime} \mathrm{x}^{\prime \prime}\right)^{2}+10 \mathrm{y}_{3}\left(\mathrm{x}^{\prime}\right)^{3} \mathrm{x}^{\prime \prime \prime}+ \\
& +10 \mathrm{y}_{2} \mathrm{x}^{\prime} \mathrm{x}^{\prime \prime} \mathrm{x}^{\prime \prime \prime}+5 \mathrm{y}_{2}\left(\mathrm{x}^{\prime}\right)^{2} \mathrm{x}^{\mathrm{iv}} \text {, } \\
& \mathrm{I}_{6}=\mathrm{x}^{\prime \prime} \mathrm{y}^{\mathrm{iv}}-\mathrm{x}^{\mathrm{iv}} \mathrm{y}^{\prime \prime}=\mathrm{y}_{4}\left(\mathrm{x}^{\prime}\right)^{4} \mathrm{x}^{\prime \prime}+6 \mathrm{y}_{3}\left(\mathrm{x}^{\prime} \mathrm{x}^{\prime \prime}\right)^{2}+\mathrm{y}_{2}\left[3\left(\mathrm{x}^{\prime \prime}\right)^{3}+4 \mathrm{x}^{\prime} \mathrm{x}^{\prime \prime} \mathrm{x}^{\prime \prime \prime}-\right. \\
& \left.-\left(x^{\prime}\right)^{2} x^{\text {iv }}\right] \text {. }
\end{aligned}
$$

From these six invariant functions we eliminate the differentials $\mathbf{x}^{\prime} \mathbf{x}^{\prime \prime}, \ldots$. obtaining the differential inrariants:

$$
\begin{aligned}
\phi_{1} & =\left\{3 I_{1} I_{3}-12 I_{1} I_{4}-5 I_{2}^{2}\right\}:\left(I_{1}\right)^{\frac{8}{3}}-\left(3 y_{2} 5_{4}-5 r_{3}^{2}\right): y_{2}{ }^{\frac{8}{3}} . \\
\phi_{2} & =\left\{15 I_{1}^{2} I_{4}+3 I_{1}^{2} I ;+\frac{11}{3} I_{2}^{3}-15 I_{1} I_{2}\left(I_{3}-2 I_{4}\right)\right\}: I_{1}{ }^{4} \\
& =\left\{35_{2}^{2} y_{5}-1.5 y_{2} y_{3} y_{4}+\frac{41}{3} y_{3}^{3}\right\}: y_{2}^{4} .
\end{aligned}
$$

1.). The general linear group

$$
p, q, x_{1}, x p-y, r p, x p+y q
$$

leares invariant the quotient

$$
Q=\left|\begin{array}{lll}
x & y & 1 \\
x^{(2)} & y^{(2)} & 1 \\
x^{3)} & y^{(3,} & 1
\end{array}\right|: \left.\begin{array}{lll}
x & y & 1 \\
x^{(3)} & y^{(3)} & 1 \\
x^{4)} & y^{(4)} & 1
\end{array} \right\rvert\,
$$

Using t, s, r as parameters of thrce successive points, we find

$$
\begin{aligned}
& =\left\{\begin{array}{l}
k_{1} I_{1}\left|d t d s^{2}\right|+k_{2} I_{2} d t d s^{3}\left|+k_{1} I_{2} d s^{1}\right|-k_{4} I_{4}\left|d t^{2} d s^{2}\right|+ \\
-k_{5} I\left|d t d s^{5}\right|+k_{6} I_{6} d t^{2} d s^{4}-k_{7} I_{7} d t d s^{6}\left|+k_{4} I_{5}, d t^{2} d s^{5}\right|+ \\
\quad+k_{9}\left|d t t^{1}\right|
\end{array}\right\}: \\
& \text { : \{ Similar expression in ds, dr. \}, }
\end{aligned}
$$

where k_{i} are constants, | dta $d s^{b}\left|=\left|\begin{array}{ll}d t a & d t^{\prime} \\ d s^{a} & d s^{b}\end{array}\right|\right.$, and I_{i} are functions defined as in 14. The form of this expansion for (? shows at once the invariance of the quotients $I_{2}: I_{1}, I_{3}: I_{1}, \ldots \ldots$. Denoting these ratios ly R, we hare

$$
\begin{aligned}
& R_{2}=I_{2}: I_{1}-\left(x^{\prime} y^{\prime \prime \prime}-x^{\prime \prime \prime} y^{\prime}\right):\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right), \\
& \left.R_{5}=I_{1}: I_{1}=x^{\prime} y^{i v}-x^{j v} y^{\prime}\right): I_{1}, \\
& R_{4}=I_{4}: I_{1}=\left(x^{\prime \prime \prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime \prime}\right): I_{1}, \\
& R_{5}=I_{5}: I_{1}-\left(x^{\prime} y^{v}-x^{v} y^{\prime}\right): I_{1}, \\
& R_{6}=I_{6}: I_{1}-\left(x^{\prime \prime} y^{1 v}-x^{j v} y^{\prime \prime}\right): I_{1} \\
& R_{7}=I_{7}: I_{1}-\left(x^{\prime} y^{v i}-x^{v i} y^{\prime}\right): I_{1}, \\
& R_{8}=I_{4}: I_{1}-\left(x^{\prime \prime} y^{v}-x^{v} y^{\prime \prime}\right): I_{1}, \\
& R_{4,}=I_{4}: I_{1} \quad\left(x^{\prime \prime \prime} y^{i v}-x^{i v} y^{\prime \prime \prime}\right): I_{1} .
\end{aligned}
$$

In these eight functions we must express y^{i} in terms of y_{i} and $x^{\text {i }}$, and then eliminate the differentials $x^{\prime}, x^{\prime \prime}, \ldots$. This work of elimination is quite tedious, but may be briefly indicated. We construct three functions.

$$
\begin{aligned}
& A \equiv 3 R_{3}-12 R_{4}-5 R_{2}^{2}=\frac{3 y_{2} y_{4}-5 y_{3}^{2}}{y_{2}^{2}}\left(x^{\prime}\right)^{2} . \\
& B \equiv 15 R_{6}+3 R_{5} \div \frac{40}{3} R_{2}^{3}-15 R_{2} R_{3}+30 R_{2} R_{4} \\
& =\frac{3 y_{2}{ }^{2} y_{5}-15 y_{2} y_{3} Y_{4}+40 y_{3}}{y_{2}{ }^{3}}\left(x^{\prime}\right)^{3}, \\
& \mathrm{C}=18 \mathrm{R}_{8}+3 \mathrm{R}_{4}-60 \mathrm{R}_{9}-21 \mathrm{R}_{2} \mathrm{R}_{5}-\frac{35}{3} \mathrm{R}_{2}{ }^{4}+35 \mathrm{R}_{2}{ }^{2} \mathrm{R}_{5}+70 \mathrm{R}_{2}{ }^{2} \mathrm{R}_{4}+210 \mathrm{R}_{4}{ }^{2} \\
& =\frac{3 y_{2}{ }^{3} y_{6}-21 y_{2}{ }^{2} y_{3} y_{5}+35 y_{2} y_{3}{ }^{2} y_{+}-3^{35} y_{3}{ }^{4}}{y_{2}{ }^{4}}\left(x^{\prime}\right)^{4} \text {, }
\end{aligned}
$$

and eliminate from these x^{\prime}, giving the differential invariants

$$
\begin{aligned}
& \Phi_{1}=\left(3 y_{2}{ }^{2} y_{5}-15 y_{2} y_{3} y_{4}+4_{3} 0 y_{3}{ }^{3}\right):\left(3 y_{2} y_{4}-5 y_{3}{ }^{2}\right)^{\frac{3}{2}} \\
& \Phi_{2}=\left(3 y_{2}{ }^{3} y_{6}-21 y_{2}{ }^{2} y_{3} y_{5}+35 y_{2} 5_{3}{ }^{2} y_{4}-\frac{35}{3} y_{3}{ }^{4}\right):\left(3 y_{2} y_{4}-5 y_{3}{ }^{2}\right)^{2} .
\end{aligned}
$$

Mathematical Definitions. By Moses C. Stevens.

Performance of the Twenty-Million-Gallon Snow Pumping Engine of the Indianapolis Water Company. By Wr. F. M. Goss.

The fact that a pumping engine recently installed within the State of Indiana has giren a duty performance higher than that previously reported for any pumping engine in any country is deemed of sufficient moment to merit the attention of the Academy.

This engine was built by the Snow Steam Pump Works of Buffalo, N. I.., and its installation at the Riverside statiou of the Indianapolis Water Company was completed in season for an acceptance test in July, 1898. It is a triple-expansion, fly-wheel engine, having a single acting pump below and in line with each of the three steam cylinders. Its principal dimensions are as follows:
Diameter of cylinders: Inches.
High pressure 29
Intermediate 52
Low pressure 80

[^0]: *Lie: leber Differentialgleichungen, die eine (iruppe gestatten. Mathematische Annalen, Bd. XXXII.
 \dagger Throughout this paper we shall employ the following notation:
 (a) $x, y ; x^{2}, y^{(2)} ; x^{(3)}, y^{(3)} ; \ldots$ are points of the plane.
 (b) $x^{\prime}=\frac{d x}{d t}, x^{\prime \prime}=\frac{d^{2} x}{d t^{2}}, \ldots . ; y^{\prime} \quad \frac{d y}{d t}, y^{\prime \prime} \frac{d^{2} y}{d t^{2}}, \ldots$. .
 (c) $y_{1} \quad \frac{d y}{d x}, y_{2}-\frac{d^{2} y}{d x^{2}}, \ldots$. ; hence, we have $y^{\prime} \quad y_{1} x^{\prime}$, $y^{\prime \prime}=y_{2}\left(x^{\prime}\right)^{2}+y_{1} x^{\prime \prime}, y^{\prime \prime \prime} \quad y_{3}\left(x^{\prime}\right)^{3}+3 y_{2} x^{\prime} x^{\prime \prime}+y_{1} x^{\prime \prime \prime}, \ldots \ldots$

[^1]: *Lie: Math. Annalen, BI. XXXII, p. 220.

