CHECKS ON COMPUTATIONS IN THE SOLUTION OF TRIANGLES

A. M. KENYON

It is the purpose of this note to illustrate methods of checking the accuraey of the results when unknown parts of plane triangles are computed from given parts. Five place tables are used in the computations.

I. RIGHT TRIANGLES.

Let h represent the hypotemuse and a and b the other two sides of a right triangle Let R be the right angle and A and B the acute angles opposite a and b respectively . To fix ideas suppose A is not less than B.

Either of the following identities contains all five of the variable parts and can be used as a cheek formula when a right triangle has been completely solved.

Fig. 1
$\geq a b=h^{2}$ cos $(A-B)$
(2) $(a+b)(a-b)=h^{2} \sin (a-B)$

To prove these produco $A R(F i g, 1)$ to C making $R C=.1 R$, comnect $B C$, and draw $C D$ perpendicular to $A B$, Then $C B=h$ and angle $B C D=-1 B$,

$$
C D=h \cos (A-B)=2 b \sin A
$$

Therefore

$$
h^{2} \cos (A-B)=2 b h \sin A=2 a b
$$

$$
D B=h \sin (A-B)=h-2 b \cos A
$$

Therufore

$$
h^{2} \sin (A-B)=h^{2}-2 b h \cos A=a^{2}-b^{2}
$$

It is ovident that these formulas hold also when A is less than B. If it is desired to check only the sides, either of the formulas

$$
\text { (3) } a=(h+b)(h-b) \text { or } b^{2}=(h+a)(h-a)
$$

may be used.

108

Example 1. Given $A=63^{\circ}, h=28.54$. Compute $B=27^{\circ}, \log a=1.40533$, $a=25.429, \log b=1.11250, b=12.957$.

Example 2. Given $A=28^{\circ} 40^{\prime} .4, b=20.71$ Compute $B=61^{\circ} 19^{\prime} .6$ $\log a=1.05740 \%, a=11.326 . \log h=1.37300, h=23.605$.

Checks

It appears that these checks are not all sensitive to the same degree. Experience will assist the computer in choosing the one best adapted to the problem at hand. For example, (1) is more sensitive than (2) when the difference of the angles is less than 45° and vice versa. Of (3) that one is better in which the factors are most nearly equal.

II. OBLIQUE TRIANGLES

When any triangle has been completely solved the formulas

$$
\begin{aligned}
& \text { (4) } \quad(a-b) \cos 1 / 2 C=c \sin 1 / 2(A-B) \\
& \text { (5) } \quad(a+b) \sin 1 / 2 C=c \cos 1 / 2(A-B) \\
& \text { (6) } \quad(a-b)(a+b) \sin C=c^{2} \sin (A-B)
\end{aligned}
$$

together with those obtained from these by cyclic permutations of the letters representing the sides and angles, may be used as checks.

Formulas (4) and (5) may be proved as follows and (6) is readily deduced from them.

Let $A B C$ be any triangle having two sides unequal, say $a>b$. With a radius b, the shorter of the two unequal sides, and centre C, the vertex of their included angle, describe a circle through A which cuts the side $C B$ in a point D bet ween B and C and also at a second point E beyond C. Draw $E A$ and at B erect a perpendicular which meets $E A$ produced in F. On $D F$ as diameter eonstruct a circle; this circle will pass through A and B. Then angle $B E F=1 / 2 C, D F A=B, B F E=1 / 2(A+B)$, and $B F D=$ $1 / 2(A-B)$.

In the triangle $A B D$,

$$
\frac{a-b}{c}=\frac{\sin B A D}{\sin B D A}
$$

$$
\text { but } \quad \sin B A D=\sin B F D=\sin ^{1} 1_{2}(A B)
$$

$$
\text { and } \quad \sin B D . A=\sin A D E=\cos A E D=\cos 1_{2} C
$$

Therefore

$$
(a-b) \cos 1_{2} C=c \sin \frac{1}{2}(A-B)
$$

In the triangle $A B E$,

$$
\frac{a+b}{c}=\frac{\sin B \Delta E}{\sin A E B}
$$

$$
\text { but } \sin B A E=\sin B A F=\sin B D F=\cos B F D=\cos 1 / 2\{-1-5\}
$$ and

Therefore

$$
(a+b) \sin \frac{1}{2} C=c \cos \frac{16}{2}(A-B)
$$

Case 1. Given a side and two angles.

Example 1. Given $a=2.903, B=79^{\circ} 46^{\prime}, C=33^{\circ} 15^{\prime}$. Compute $A=$ $67^{\circ} 5^{\prime}$ and $\log b=0.49146, b=3.1007, \log c=0.23757, c=1.7281$, by the law of sines.

Case 2. Given two sides and their included angle.
Example 1. $a=22, b=12, C=42^{\circ}$. Compute $c=15.350$ by the law of cosines.

a	$=22$
b	$=12$
c	$=15.350$
$2 s$	$=49.350$
s	$=24.675$
$s-a$	$=2.675$
$s-b$	$=12.675$
$s-c$	$=9.325$
Check	$=24.675$

Check

$s(s-c) \tan ^{2} 1 / 2 C=(s-a)(s-b)$
1.39226
0.96965

$9.58418-10$	0.42732
$9.58418-10$	1.10295
1.53027	1.53027

Check $=24.675$

Computo $A=106^{\circ} 27^{\prime} .7$ and $B=31^{\circ} 32^{\prime} .4$ by law of sines.
Checks

$$
\begin{aligned}
a+b & =34 \\
a-b & =10 \\
c & =15.35 \\
A & =106^{\circ} 27^{\prime} .7 \\
B & =31^{\circ} 32^{\prime} .4 \\
A-B & =74^{\circ} 53^{\prime} .3 \\
1_{2}(A-B) & =37^{\circ} 27^{\prime} .6 \\
1_{2} C & =21^{\circ}
\end{aligned}
$$

$(a-b) \cos 1 / 2 C=c \sin 1 / 2(A-B)$

1.00000 $9.97015-10$	9.186411 0.97015
$(a+b) \sin 1 / 2 C=c \cos 1 / 2(A-B)$	

1.53148	
$9.55433-10$	9.88611

$1.08581 \quad 1.08581$
$(a+b)(a-b) \sin \left(C=c^{2} \sin (1-13)\right.$

1.53148	1.18611
1.00000	1.18611
$9.82551-10$	$\underline{9.98478-10}$
2.53699	2.53700

Example 2. Given $a=34.645, b=22.531, C=43^{\circ} 31^{\prime}$.

$$
\begin{array}{rlrl}
a=34.645 & 1 / 2 C=21^{\circ} 45^{\prime} .5 & 1 / 2(A+B)=68^{\circ} 14^{\prime} .5 \\
b=22.531 & \text { Then compute } & 1 / 2(A-B)=27^{\circ} 57^{\prime .6} \\
a+b=57.176 & \text { whence } & \text { and } & A=96^{\circ} 12^{\prime} .1 \\
a-b=12.114 & & B=10^{\circ} 16^{\prime} .9
\end{array}
$$

Check

$a \sin B=b \sin A$

1.53964 $9.81060-10$ 1.35024 $9.952745-10$	1.35023

Compute $\log c=1.38014, c=23.996$ by the law of sines, in two ways. Checks

$(a-b) \cos 1 / 2 C=c \sin 1 / 2(A-B)$	
1.08328	1.38014
$9.96790-10$	$\underline{9.67104-10}$
1.05118	1.05118

$(a+b) \sin 1 / 2 C=c \cos 1 / 2(A-B)$	
1.75721	
$9.56902-10$	1.38014
1.32623	$\frac{9.94610-10}{1.32624}$

$(a+b)(a-b) \sin C=c^{2} \sin (A-B)$	
1.75721	1.38014
1.08328	1.38014
$9.83795-10$	$\frac{9.91817-10}{2.67845}$

Case 3. Given the three sides.
Example. Given $a=2314, b=2431, c=3124$. Compute $1 / 2 A=23^{\circ} 36^{\prime} .8$ $1 / 2 B=25^{\circ} 13^{\prime} .8,1 / 2 C=41^{\circ} 9^{\prime} .4$ and check by taking their sum.

Checks
$a \sin B=b \sin A$

3.36436 3.38578 $9.88716-10$ $9.86572-10$	3.25150

$a \sin C=c \sin A$

3.36436	3.49471
$9.99608-10$	$\underline{9.86572}-10$
3.36044	$\underline{3.36043}$

$$
\begin{aligned}
c+a & =5438 \\
c-a & =810 \\
1 / 2(C-A) & =17^{\circ} 32^{\prime} .6 \\
(C-A) & =35^{\circ} 5^{\prime} .2
\end{aligned}
$$

$b \sin C=c \sin B$

$\begin{aligned} & 3.38578 \\ & 9.99608-10 \end{aligned}$	$\begin{aligned} & 3.49471 \\ & 9.88716-10 \end{aligned}$
3.38186	3.38187
(c-a) $\cos 1 / 2 B=b \sin$	$1 / 2(C-A)$
$\begin{aligned} & 2.90849 \\ & 9.95646-10 \end{aligned}$	$\begin{aligned} & 3.38578 \\ & 9.47918-10 \end{aligned}$
2.84495	2.84496
$(c+a) \sin 1 / 2 B=b \cos$	$1 / 2(C-A)$
3.73544	3.38578
9.62967-10	$9.97932-10$
3.36511	3.36510
$(c+a)(c-a) \sin B=b^{2}$	$\sin (C-A)$
2.90849	3.38578
3.73544	3.38578
$9.88716-10$	9. $75953-10$
6.53109	6.53109

Case 4. Given two sides (say a and b) and the angle opposite one of them (say A).
Determine the number of solutions. Compute the angle B opposite the other given side, by the law of sines. If there are two sohtions call the acute angle B_{1}, and the obtuse one B_{2}.

It is now possible to check by the law of tangents but this is in many cases not sensitive enough to be decisive. Find the third angle C by subtracting $A+B$ from 180°, and compute the third side c by the law of sines. If there are two solutions a check is given by the formulas,

$$
\begin{align*}
& B_{1}=A+C_{2} \tag{7}\\
& B_{2}=A+C_{1},
\end{align*}
$$

$$
c_{1}+c_{2}=2 b \cos A
$$

$$
c_{1}-c_{2}=2 a \cos B_{2}
$$

Example. Given $a=301.35, b=352.11, A=33^{\circ} 17^{\prime}$.
There are two solutions. Compute $\log \sin B=9.80701-10, B_{1}=39^{\circ} 53^{\prime}$, $B_{2}=140^{\circ} 7^{\prime}$. Check by the law of tangents.

Now compute c_{1} and c_{2} by the law of sines, $\log c_{1}=2.72065 . c_{1}=525.59$, $\log c_{2}=1.80013, c_{2}=63.114 ;$ whence $c_{1}+c_{2}=588.704, c_{1}-c_{2}=462.476$

CHECKS

$c_{1}+c_{2}=2 b$	$\cos A$	
	0.30103	
	2.54668	
		$9.92219-10$
2.76989	2.76990	2.66509

$$
\begin{aligned}
& c_{1}-c:=2 a \cos B \\
&=.30103 \\
& \frac{2}{9} .88907 \\
&=28499-10 \\
& 2.66509
\end{aligned}
$$

The triangles now being completely solved, any of the checks illustrated above may be used; for example

$\quad(b+a) \sin 1_{2} C_{1}:=c \cos \frac{1}{2}\left(B_{1}-1\right)$	
2.81522	$\frac{2}{9.72065}$
$\frac{9.9047-10}{2.71993}$	$\underline{2.71993}$

- Purdue University, December 1. 1919

