A Proposed Notation for the Geometry of the Triangle.

By Robt. J. Aley.

Everyone who has studied geometry very long has felt the need of a uniform notation. Much time is wasted in getting acquainted with the notations of different authors. This is especially true in modern pure geometry, where the figures are necessarily complex. The notation here proposed has been succesefully used in the schoolroom. It is partially used by several well-known writers on modern geometry. It is hoped that its simplicity and system will commend it.

Let the triangle always be lettered ABC and in the usual positive direction of mathematics, i. e. counter clock-wise. Designate the sides, opposite the angles, $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and when necessary to refer to them by number, use 1, 2, 3. Particular points are made the basis of the notation. An example will make the method clear.

Suppose $/ /$ is some particular point. In studying such a point we usually need the points of intersection with the sides of the lines from the vertices through $\%$, and also the feet of the perpendiculars from $/ /$ to the sides. We designate the first set of points as $Z_{\prime}^{\prime}, Z^{\prime} \mathrm{b}, Z^{\prime}$ c and the second as Z_{n}, Z_{b}, Z_{c}.

For the particular points, the symbol most frequently used has been in general selected.
A $\quad \mathrm{B} \quad \mathrm{C}=$ vertices of the fundamental triangle.
$\mathrm{M} \quad=$ centre of the circumerircle.
$M_{a} M_{b}, M_{c}=$ mid-points of the sides of the triangle.
I $=$ centre of the inscribed circle.
$\mathrm{l}_{1} \quad \mathrm{I}_{2} \quad \mathrm{I}_{3}=$ centres of $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}$ escribed circles.
$l_{a} \quad I_{b}, \quad I_{c}=$ points of contact of sides with inscribed circle.
$I^{\prime}{ }_{4} \quad I_{b}^{\prime} I^{\prime}{ }_{c}=$ points of intersection of AI, Bl, CI with the sides.
$\mathrm{I}_{1 \mathrm{a}} \quad \mathrm{I}_{1 \mathrm{~b}} \quad \mathrm{I}_{1 \mathrm{c}}=$ points of contact of sides with 1 st escribed circle, and so on.
G = centroid of ABC.
($\mathrm{i}_{\mathrm{a}} \quad \mathrm{G}_{\mathrm{b}} \mathrm{G}_{\mathrm{c}}=$ feet of perpendiculars to the sides from G .
$\mathrm{K} \quad=$ symmedian point (Grebe's).
$\mathrm{K}_{\mathrm{A}} \quad \mathrm{K}_{\mathrm{b}}, \mathrm{K}_{\mathrm{c}}=$ feet of perpendiculars to the sides from K .
$\mathrm{K}_{\mathrm{a}}^{\prime} \mathrm{K}^{\prime}{ }_{b} \mathrm{~K}^{\prime}{ }_{c}=$ points of intersection of $\mathrm{AK}, \mathrm{BK}, \mathrm{CK}$ with sides.
$\mathrm{K}_{1} \quad \mathrm{~K}_{2} \quad \mathrm{~K}_{3}=1 \mathrm{st}$, 2d and 3d ex-symmedian points.
$\mathrm{K}_{1 a} \mathrm{~K}_{1 b} \mathrm{~K}_{1 \mathrm{c}}=$ feet of perpendiculars to the sides from K , and so on.
$\mathrm{K}^{\prime}{ }_{1 \mathrm{a}} \mathrm{K}_{1 \mathrm{~b}} \mathrm{~K}^{\prime}{ }_{1 \mathrm{c}}=$ points of intersection of $\mathrm{AK}_{1}, \mathrm{BK}_{1}$, CK_{1} with sides, and so on. $\mathrm{H}=$ ortho centre.
$H_{a} \quad H_{b} \quad H_{c}=$ feet of altitudes of triangle.
$\Omega_{1} \quad \Omega_{2} \quad=$ the Brocard points.
$\begin{array}{lll}A_{1} & B_{1} & C_{1}=\text { Bocard's 1st triangle. }\end{array}$
$\mathrm{A}_{2} \quad \mathrm{~B}_{2} \quad \mathrm{C}_{2} \quad=$ Brocard's $2 d$ triangle.
$\mathrm{F} \quad=$ centre of the nine points circle.
Q $\quad=$ Nagel's point.
(21) Q2 $Q_{3}=$ associated Nagel points.
$\mathrm{A}_{3} \quad \mathrm{~B}_{3} \quad \mathrm{C}_{3}=$ Nagel's triangle.
$\begin{array}{cccc}A_{4} & \mathrm{~B}_{4} & \mathrm{C}_{4} & =\text { Schwatt's triangle. }\end{array}$
$\mathrm{N} \quad=$ Tarry's point.
$\mathrm{R} \quad=$ Steiner's point.
$A^{\prime} \quad B^{\prime} \quad C^{\prime}=$ mid-points of the arcs of the circumeircle subtended by the sides of the triangle.
$\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}=$ opposite points from $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ on circumcircle.
$\mathrm{P} \quad=$ Gergonne point.
$\begin{array}{lll}P_{1} & P_{2} & P_{3}=t h e ~ a s s o c i a t e d ~(i e r g o n n e ~ p o i n t s . ~\end{array}$
a b c $\quad=$ the sides of the triangle.
$\mathrm{h}_{1} \quad \mathrm{~h}_{2} \quad \mathrm{~h}_{3}=$ the three altitudes.
$\mathrm{m}_{1} \quad \mathrm{~m}_{2} \quad \mathrm{~m}_{2}=$ the medians.
$r \quad=$ radius of incircle.
$\begin{array}{llll}r_{1} & r_{2} & r_{3} & =\text { radius of excircle. }\end{array}$
$\mathrm{s} \quad=\frac{1}{2}(\mathrm{a}+\mathrm{b}+\mathrm{c})$.
$\mathrm{s}_{1} \quad \mathrm{~s}_{2} \quad \mathrm{~s}_{3}=\mathrm{s}-\mathrm{a}, \mathrm{s}-\mathrm{b}, \mathrm{s}-\mathrm{c}$.
$\mathrm{R} \quad=$ radius of circumeircle.
$\triangle \mathrm{D} \quad=$ area of triangle.

