The Point P and Some of Its Properties.

By Robert J. Aley.

P is the point of concurrence of the lines drawn from the vertices of a triangle to the points of contact of the inscribed circle with the sides. It has been called the Gergonne Point. The ratios of the distances of the point P from the sides are $\frac{1}{a(s-a)}: \frac{1}{b(s-b)}: \frac{1}{c(s-c)}$ (Aley, Contributions to Geom. of the Triangle, p. $10(10)$). From these ratios the actual distances of the point from the sides is easily found to be

$$
\begin{aligned}
P P_{A} & =\frac{2 \Delta(s-b)(s-c)}{a-(s-a)(s-b)} \\
P P_{b} & =\frac{2 \Delta(s-c)(s-a)}{b-(s-a)(s-b)} \\
P P_{c} & =\frac{2 د(s-a)(s-b)}{c-(s-a)(s-b)}
\end{aligned}
$$

P and Q (Nagel's Point) are isotomic conjugates and they are collinear with $\%$, the isotomic conjugate of I (incentre) (Ibid., page 8, III).
P_{1} (the isogonal conjugate of l^{\prime}), $\%_{1}$ the isogonal conjugate of $\%$ and K are collinear (Ibid., page $13, \mathrm{IV}$).
P_{1}, I and M are collinear.
The ratios of P_{1} are $a(s-a): b(s-b): c(s-c)$ (Ibid., p. 3, 81$)$.
From these the actual distances of P_{1} from the sides is readily found to be

$$
\begin{aligned}
& P_{1} P_{1 a}=\frac{2 \Delta a(x-a)}{S ป a^{2}-2 a^{3}} \\
& P_{1} P_{1 b}=\frac{2 \Delta b(s-b)}{S-a^{2}-\Delta a^{3}} \\
& P_{1} P_{1 c}=\frac{2\lrcorner c(8-c)}{8 \leq a^{2}-2 a^{3}}\{\text { Ibid., page } 14,(7)\} .
\end{aligned}
$$

It is well known that

$$
\begin{aligned}
& \mathrm{II}_{\mathrm{H}}=\frac{\Delta}{\mathrm{s}} \\
& \mathrm{II}_{\mathrm{b}}=\frac{\Delta}{\mathrm{s}} \\
& \mathrm{II}_{\mathrm{c}}=\frac{\Delta}{\mathrm{s}}
\end{aligned}
$$

The ratios of M are $a\left(-a^{2}+b^{2}+c^{2}\right): b\left(a^{2}-b^{2}+c^{2}\right): c\left(a^{2}+b^{2}-c^{2}\right)$.

From these ratios it is easily found that

$$
\begin{aligned}
& \mathrm{MM}_{\mathrm{A}}=\frac{\mathrm{a}\left(-\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)}{8 د} \\
& \mathrm{MM}_{\mathrm{h}}=\frac{\mathrm{b} \mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}}{8 د} \\
& \mathrm{MM}_{\mathrm{c}}=\frac{\mathrm{c}\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right)}{8 د}
\end{aligned}
$$

$$
I X=I_{a}-M_{a}
$$

$$
\begin{aligned}
& =\frac{\Delta}{S}-\frac{a\left(-a^{2}-b^{2}+c^{2}\right)}{8 د} \\
& =\frac{1}{8 S\lrcorner}\left\{8 د^{2}-a S\left(-a^{2}+b^{2}+c^{2}\right)\right\} \\
& =\frac{8}{8 S\lrcorner}\left(8(S-a)(S-b)(S-c)-a\left(-a^{2}+b^{2}+c^{2}\right)\right) \\
& =\frac{S}{8 S\lrcorner}\left(a^{2} b+a^{2} c+b^{2} c+b c^{2}-2 a b c-b^{3}-c^{3}\right)
\end{aligned}
$$

$J z: I x=\frac{\Delta}{s\left(s \Sigma a^{2}-\Sigma a^{3}\right)}\left(a^{2} b+a^{2} c+b^{2} c+b c^{2}-2 a b c-b^{3}-c^{3}\right):$

$$
\begin{aligned}
& : \frac{8}{8 s \nabla}\left(a^{2} b+a^{2} c+b^{2} c+b c^{2}-2 a b c-b^{3}-c^{3}\right)= \\
& =8 \Delta^{2}: s\left(s \Sigma a^{2}-\Sigma a^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I} Z=\mathrm{II}_{\mathrm{a}}-\mathrm{P}_{1} \mathrm{P}_{\mathrm{la}} \\
& =\frac{1}{\mathrm{~S}}-\frac{2 \perp \mathrm{a}(\mathrm{~S}-\mathrm{a})}{\mathrm{S} \Sigma_{\mathrm{a}}{ }^{2}-\Sigma_{\mathrm{a}}{ }^{3}} \\
& =\frac{\Delta}{S\left(S \Sigma_{a^{2}}{ }^{2}-\Sigma_{a^{3}}{ }^{3}\right.}\left(S \Sigma_{a}{ }^{2}-\Sigma_{a^{3}}{ }^{3}-2 a S(S-a)\right) \\
& =\frac{1}{S\left(S \Sigma_{a}{ }^{2}-\Sigma_{a}{ }^{3}\right)}\left(a^{2} b+a^{2} c+b^{2} c+b c^{2}-2 a b c-b^{3}-c^{3}\right)
\end{aligned}
$$

Similarly

$$
\mathrm{I} Z_{2}: I X_{2}=8 \Delta^{2}: \mathrm{s}\left(\mathrm{~s} \Sigma \mathrm{a}^{2}-\Sigma \mathrm{a}^{3}\right)
$$

And the same is true of $I Z_{3}: I X_{3}$.
The points are therefore collinear.
$\mathrm{IZ}_{1}: \mathrm{IX}_{1}=\mathrm{IP}_{1}: \mathrm{IM}$
$\mathrm{IP}_{1}: \mathrm{IM}=8 \Delta^{2}: \mathrm{S}\left(\mathrm{SE} \mathrm{a}^{2}-\Sigma \mathrm{a}^{3}\right)$
$I P_{1}: P_{1} M=I P_{1}: I M-I P_{1}=8 \nu^{2}: s\left(s \Sigma a^{2}-\Sigma a^{3}\right)-8 د^{2}=$
$=(-a+b+c)(a-b+c)(a+b-c): s \Sigma^{2}-\Sigma^{2}$ $-(-a+b+c)(a-b+c)(a+b-c)$.
The ratio of division is too complex for ordinary use.
If upon the lines $\mathrm{PP}_{\mathrm{a}}, \mathrm{PP}_{\mathrm{b}}, \mathrm{PP}_{\mathrm{c}}$ equal distances from P be taken the triangle $\mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6}$ thus formed is similar to Nagel's triangle $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$.

For $\angle A_{6} \mathrm{~PB}_{6}=\Pi-\mathrm{C}$
And $\angle \mathrm{PA}_{6} \mathrm{~B}_{6}=\angle \mathrm{PB}_{6} \mathrm{~A}_{6}=\frac{1}{2} 5\left(\Pi-\angle \mathrm{A}_{6} \mathrm{~PB}_{6}\right)=\frac{1}{2} \mathrm{C}$.
Similarly the $\angle \mathrm{PB}_{6} \mathrm{C}_{6}=\frac{1}{2} \mathrm{~A}$.
And bence $\angle \mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6}=\frac{1}{2} \mathrm{~A}+\frac{1}{2} \mathrm{C}=\frac{1}{2}(\mathrm{~A}+\mathrm{C})$.
Likewise $\angle \mathrm{B}_{6} \mathrm{C}_{6} \mathrm{~A}_{6}=\frac{1}{2}(\mathrm{~A}+\mathrm{B})$
And $\angle \mathrm{B}_{6} \mathrm{~A}_{6} \mathrm{C}_{6}=\frac{1}{2}(\mathrm{~B}+\mathrm{C})$.
But these are the angles of Nagel's triangle and therefore $A_{6} B_{6} C_{6}$ is similar to $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$.
P is the symmedian point of the triangle $I_{A} I_{b} I_{c}$. (Proc. Edinburgh Math. Soc., Vol. XI., page 105).

If through P lines are drawn parallel to the $I_{a} I_{b}, I_{b} I_{c}, I_{c} I_{a}$ respectively, the six points of intersection with the sides are concyclic. The circle is call Adam's circle.

