Geonesic Lines on tife Sintractrin of Revolution.
E. L. Hancock.

The syntractrix is defined as a curve formed by taking a constant length, d upon the tangent c to the tractrix*. The surface formed by revolving this curve about its asymptote is the one under consideration. We shall call it S .

Being a surface of revolution it is represented by the equations

$$
\begin{aligned}
& \mathrm{x}=\mathrm{u} \cos \mathrm{v} \\
& \mathrm{y}=\mathrm{u} \sin \mathrm{v} \\
& \mathrm{z}=-\sqrt{\mathrm{d}^{2}-\mathrm{u}^{2}}+\frac{c}{2} \log \frac{\mathrm{~d}+\sqrt{\mathrm{d}^{2}-\mathrm{u}^{2}}}{\mathrm{~d}-\sqrt{\mathrm{d}^{2}-\mathrm{u}^{2}}}
\end{aligned}
$$

Using the Gaussian notation \dagger we find:

$$
E=\frac{u^{2}\left(d^{2}-2 c d\right)+c^{2} d^{2}}{u^{2}\left(d^{2}-u^{2}\right)}, F=0, G=u^{2}, A=-\frac{u^{2}-c d}{u \sqrt{d^{2}-n^{2}}} u \cos x, B=-
$$ $\frac{u^{2}-c d}{u \sqrt{d^{2}-u^{2}}} u \sin v C=u, D=\frac{u^{2}\left(d^{2}-2 c d\right)+c d^{3}}{u\left(d^{2}-u^{2}\right)^{3}}, D^{\prime}=0, D^{\prime \prime}=\frac{u\left(u^{2}-c d\right)}{\sqrt{d^{2}-u^{2}}}$ $K=\frac{1}{R_{1} R_{2}}=\frac{D^{\prime \prime}-D^{\prime 2}}{E G-F^{2}}=\frac{\left(\mathrm{n}^{2}-c \mathrm{~d}\right)\left[\mathrm{u}^{2}(\mathrm{~d}-2 \mathrm{c})+\mathrm{cd}^{2}\right]}{\left(\mathrm{d}^{2}-\mathrm{u}^{2}\right)\left[\mathrm{u}^{2}(\mathrm{~d}-2 \mathrm{c})+\mathrm{c}^{2} \mathrm{~d}\right.}$

In the particular surface given by $d=2 c$ the Ganssian curvature becomes

$$
\frac{2\left(\mathrm{n}^{2}-\frac{\mathrm{d}^{2}}{2}\right)}{\mathrm{d}^{2}-\mathrm{n}^{2}}
$$

Here d is positive, and since $d>u$, the denominator is always positive. We get the character of the curvature of different parts of the surface by considering the numerator. When $\mathrm{u}^{2}=\mathrm{d}^{2} 2, \mathrm{~K}=\mathrm{O}$, i. e., the circle $\mathrm{il}=\mathrm{d} 2$ $\frac{d}{\sqrt{2}}$ is made up of points lraving zero-curvature. When $u^{2}>d^{2} \cdot 2, K>O$, and when $\mathrm{u}^{2}<\mathrm{d}^{2} / 2, \mathrm{~K}<\mathrm{O}$.

For this particular surface

$$
\begin{gathered}
E=\frac{d^{4}}{4 u^{2}\left(d^{2}-u^{2}\right)}, F=0, G=u^{2}, A=-\frac{2 u^{2}-d^{2}}{2 u^{\prime} d^{2}-u^{2}} u \cos v, B=- \\
\frac{2 u^{2}-d^{2}}{2 u \sqrt{d^{2}-u^{2}}} u \sin v C=0, D=\frac{d^{4}}{2 u\left(d^{2}-u^{2}\right)^{3}}, D^{\prime}=0, D^{\prime \prime}=\frac{u\left(2 u^{2}-d^{2}\right.}{2 \sqrt{d^{2}-u^{2}}}
\end{gathered}
$$

To get the geodesic lines of the surface we make use of the method of the calculus of variations according Weierstrass§. This requires that we minimize the integral:

[^0]$I=\int_{t^{2}}^{t^{1}} \sqrt{E d u^{2}+2 \mathrm{~F} d u} \overline{d v}+\bar{G} \overline{d v^{2}} . d t$
Denote $\sqrt{E u^{\prime 2}+2 F u^{\prime} v^{\prime}+G v^{\prime 2}}$ by F. Then the first condition for a minimum of I is $F v-\frac{d}{d t} \mathrm{Fr}^{\prime}=0 \|$

Now, in this case $F v=0$, so that $\frac{d}{d t} \mathrm{Fv}^{\prime}=0$
Hence $\mathrm{Fr}^{\prime}=\delta$, or substituting the values E, F and G this becomes

$$
\frac{u^{2} v^{1}}{\sqrt{\frac{d^{4} u^{\prime 2}}{4 u^{2}\left(d^{2}-u_{2}\right)}+u^{2} v^{\prime 2}}}=\delta
$$

When $\delta=0, v^{\prime}=0$, hence $v=$ constant, i. e., the meridians are geodesic lines.

When $\delta=0$

Making the substitution $u=1 t$, (1) becomes
(2) $\quad v=\int \frac{-\delta d^{2} t^{2} d t}{2 V\left(\overline{\left.t^{2} d^{2}-1\right)\left(1-\delta^{2} t^{2}\right)}\right.}+\delta^{\prime}$

We have for the reduction of the general elliptic integral

$$
\begin{aligned}
& * R(x)=A x^{4}+4 B x^{3}+6 C^{2}+1 \mathrm{x}^{\prime} x+A^{\prime} \\
& g_{2}=A A^{\prime}-4 B B^{\prime}+3 C^{2} \\
& g_{3}=A c A^{\prime}+2 B c B^{\prime}-A^{\prime} B^{2}-A B^{\prime 2}-c^{3}
\end{aligned}
$$

These become in the present case
$R(t)=\left(t^{2} d^{2}-1\right)\left(1-\delta^{2} t^{2}\right)=-\delta^{2} d^{2} t^{4}+\left(d^{2}+\delta^{2}\right) t^{2}-1$

$$
\begin{aligned}
& g_{2}=\delta^{2} d^{2}+\frac{\left(d^{2}+\delta^{2}\right)}{12} \\
& g_{3}=\frac{\delta^{2} d^{2}\left(d^{2}+\delta^{2}\right)}{6}-\left(\frac{d^{2}+\delta^{2}}{6}\right)^{3}
\end{aligned}
$$

We get also
$R^{\prime}(t)=-4 \delta^{2} d^{2} t^{3}+2\left(d^{2}+\delta^{2}\right) t$
$R^{\prime}(t)=-12 \delta^{2} d^{2} t^{2}+2\left(d^{2}+\delta^{2}\right)$
Making the substitution
(3)

$$
\mathbf{t}=\mathbf{a}+\frac{\frac{1}{4} R^{\prime}(\mathbf{a})}{p^{1} u^{\frac{1}{2} \frac{1}{4}} \mathbf{R}^{\prime \prime}(\mathbf{a})^{\dagger}}
$$

Where a is one of the roots of $R(t)$, say $l d$, we get

$$
t=\frac{1}{d}+\frac{\frac{1}{2}\left(d^{2}-\delta^{2}\right)}{d}
$$

[^1]Now, since $\frac{\mathrm{dt}}{\mathrm{du}}=\sqrt{\mathrm{R}(\mathrm{t})}$ we get from (2)
(4) $\quad v=-\frac{\delta d}{2} \int t^{2} d u+\delta^{\prime}=\frac{1}{2 \delta} \int\left[-\delta^{2}-\frac{\delta^{2}\left(d^{2}-\delta^{2}\right)}{p u-p^{v}}-\frac{\frac{\delta^{2}}{4}\left(d^{2}-\delta^{2}\right)^{2}}{\left(\mathrm{pu-p} \mathrm{v}^{2}\right.}\right\} d u+\delta^{\prime}$

Noting that in the present case

$$
\begin{aligned}
& \left(\mathrm{p}^{\prime} \mathrm{v}\right)^{2}=-\frac{\delta^{2}}{4}\left(d^{2}-\delta^{2}\right)^{2} \\
& \mathrm{p}^{\prime \prime} \mathrm{v}=-\delta^{2}\left(\mathrm{~d}^{2}-\delta^{2}\right)
\end{aligned}
$$

and remembering that

$$
\left.\left.\frac{\left(p^{\prime} v\right)^{2}}{p u-p v)^{2}}=p(n+v)-p\right) n-v\right)-2 p r-\frac{p^{\prime \prime} v}{p u-p v}
$$

(\dagger) becomes

$$
\begin{aligned}
& \mathrm{v}=\frac{1}{2 \delta} \int\left[-\delta^{2}+p^{\prime}(\mathrm{u}+\mathrm{v})-p^{\prime}(\mathrm{u}-\mathrm{v})-2 p \mathrm{p}\right] d \mathrm{du}+\delta^{\prime} \\
& =\frac{1}{2 \delta}\left[-\frac{1}{6}\left(d^{2}+\delta^{2}\right) \mathrm{u}+\frac{\tilde{\sigma}^{\prime}}{\sigma}(\mathrm{u}-\mathrm{v})-\frac{\tilde{v}^{\prime}}{\sigma}\left(\mathrm{u}+\mathrm{v}^{2}\right)\right]+\delta^{\prime}
\end{aligned}
$$

The functions $\bar{\sigma}_{\sigma}^{\prime}$ may be expressed in power series. We have then the geodesic lines given by the equations

$$
\begin{aligned}
& v=f(t)+\delta^{\prime} \\
& u=1 \\
& t
\end{aligned}
$$

The constant of being additive has no effect mpon the nature of the geodesics. It determinces their position. All lines given by δ^{\prime} may be made to coincide by a revolution about the z-axis. The curves may be completely discussed when $\delta^{\prime}=0$.

Since the parameter lines of the surface consist of geodesic lines throngh a point and their orthogonal trajectories E may be taken equal to unity.* $\mathrm{E} \mathrm{dn}^{2}=\mathrm{d}^{\prime 2}{ }^{2}$

$$
\text { Hence }-\frac{d}{2} \log \left(\frac{d+r^{\prime}}{\frac{d^{2}-n^{2}}{u}}\right)=n^{\prime} \text {, or } n=d \operatorname{sech} \frac{2 n^{\prime}}{d}
$$

Because of the relations of the surface to the pseudo-sphere it may be represented upon the upper part of the Cartesian planet. The relation between the surfaces is given by the equations

$$
\begin{aligned}
& \mathrm{v}=\mathrm{v}^{\prime} \\
& \mathrm{u}=\frac{\mathrm{c}}{\mathrm{~d}} \mathrm{u}^{\prime}
\end{aligned}
$$

[^2]where u and v are co-ordinates of points on the psendo-sphere and n^{\prime} and v^{\prime} co-ordinates of points on S . The equations of transformation from S to the plane are
\[

$$
\begin{aligned}
& \mathrm{v}=\mathrm{x} \\
& -\frac{n}{d} \\
& \mathrm{ce}^{2}=\mathrm{y}
\end{aligned}
$$
\]

The real part of the surface being represented on the strip included between $\mathrm{y}=\mathrm{c}$ and $\mathrm{y}=\mathrm{c}$ e.

Comparison of Gauss' and Cayley : Proofs of tile Existence Theorem.
O. E. Glent.
[By title.]

Motion of a Bicycle un a Melix Track.

> O. E. Glent.

The equation of the helix surface may be conveniently expressed in surface co-ordinates, thus:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{r} \cos \mathrm{u} \equiv \mathrm{f}_{1}(\mathrm{ru}) \\
& \mathrm{y}=\mathrm{r} \sin \mathrm{u} \equiv \mathrm{f}_{2}(\mathrm{ru}) \\
& \mathrm{z}=\frac{\mathrm{bu}}{2 \pi} \equiv \mathrm{f}_{3}(\mathrm{ru})
\end{aligned}
$$

in which r represents the distance of a point from the z axis, and u the

[^0]: * Peacock, 1. 175.
 \dagger Bianchi, Differential Geometrie, pp. 61, 87, 105.
 Osgood, Annals of Mathematics, Yol. II (1901), p. 105.

[^1]: Kineser, Variationsrechnung. Fr denotes function v.
 *Vlein, Ellip. Mod. Functionen, Vol. I, p. 15.
 \dagger Enneper, Ellip. Functionen, 1890, p. 30.

[^2]: *Knoblauch, Krummen Fl:ichen, p. 49.
 \dagger Bianchi, Differential Geometrie, p. 419.

