where u and v are co-ordinates of points on the psendo-sphere and n^{\prime} and v^{\prime} co-ordinates of points on S . The equations of transformation from S to the plane are

$$
\begin{aligned}
& \mathrm{v}=\mathrm{x} \\
& -\frac{n}{d} \\
& \mathrm{ce}^{2}=\mathrm{y}
\end{aligned}
$$

The real part of the surface being represented on the strip included between $\mathrm{y}=\mathrm{c}$ and $\mathrm{y}=\mathrm{c}$ e.

Comparison of Gauss' and Cayley : Proofs of tile Existence Theorem.
O. E. Glent.
[By title.]

Motion of a Bicycle un a Melix Track.

> O. E. Glent.

The equation of the helix surface may be conveniently expressed in surface co-ordinates, thus:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{r} \cos \mathrm{u} \equiv \mathrm{f}_{1}(\mathrm{ru}) \\
& \mathrm{y}=\mathrm{r} \sin \mathrm{u} \equiv \mathrm{f}_{2}(\mathrm{ru}) \\
& \mathrm{z}=\frac{\mathrm{bu}}{2 \pi} \equiv \mathrm{f}_{3}(\mathrm{ru})
\end{aligned}
$$

in which r represents the distance of a point from the z axis, and u the
angle between the x axis and the projection of x upon the (xy) plane; b being a constant.

It will be assumed here that there is a force of friction equal and opposite to the centrifugal force, of a particle (or wheel) moving down the surface, under the action of gravity (g). If these equal and opposite rectors be introduced, the problem reduces to that of determining the motion of a particle (or wheel) on a fixed smooth surface.

The general equation of kinetic energy* is,
(1) $d\left(\frac{1}{2} m v^{2}\right)=\left\{X \frac{\dagger d f_{1}}{d r}+Y \frac{d f_{2}}{d r}+Z \frac{d f_{3}}{d r}\right\} d r+\left\{X \frac{d f_{1}}{d u}+Y \frac{d f_{2}}{d u}+Z \frac{d f_{3}}{d u}\right\} d u$, where m represents the mass, v the velocity and X, Y and Z the axial components of the impressed forces.

Denoting the angle between the [xy] plane and the tangent plane of the surface by a there results:
(2) $X=m g \sin a \cos a \cos u \equiv m g \frac{\sin 2 a}{2} \cos u$.

$$
\begin{aligned}
& Y=m g \sin a \cos a \sin u=m g \frac{\sin 2 a}{2} \sin u . \\
& Z=m g .
\end{aligned}
$$

And equation (1) reduces to
$d\left(\frac{1}{2} m v^{2}\right)=\left\{g \frac{\sin 2 a}{2} \cos ^{2} u+g \frac{\sin 2 a}{2} \sin ^{2} u\right\} m d r$.

$$
+\left(-g \frac{\sin 2 a}{2} r \sin u \cos u+g \frac{\sin 2 a}{2} r \sin u \cos u+\frac{g b}{2 \pi}\right) m d u ; \text { or, }
$$

(3) $d\left(\frac{1}{2} m v^{2}\right)=m\left(g \frac{\sin 2 a}{2}\right)^{\circ} d r+\frac{m g b}{2 \pi} d u$.

But the angle a equals,
$a=\cos ^{-1} \frac{2 \pi r}{\sqrt{4 \pi^{2} \mathrm{r}^{2}}+\mathrm{b}^{2}}$
Whence $\frac{\sin 2 \mathrm{a}}{2} \equiv \sin \mathrm{a} \cos \mathrm{a}=\frac{2 \pi \mathrm{rb}}{4 \pi^{2} \mathrm{r}^{2}+\mathrm{b}^{2}}$ and from (3).
(4) $d\left(\frac{1}{2} m r^{2}\right)=\left(\frac{2 \pi b m g r}{4 \pi^{2} r^{2}+b^{2}}\right) d r+\left(\frac{m g b}{2 \pi}\right) d u$.

This, upon integration, gives,
(5) $v^{2}=\frac{g b}{2 \pi} \log \left(\frac{r^{2}+\frac{b^{2}}{4 \pi^{2}}}{r_{0}^{2}+\frac{b^{2}}{4 \pi^{2}}}\right\}+\frac{g b}{\pi} n$, the initial conditions being $v=0$ and $r=r_{0}$ when $u=0$.

[^0]Now $r^{2}=\left(\frac{* d f_{1}}{d r} \frac{d r}{d t}+\frac{d f_{1}}{d u} \frac{d u}{d t}\right)^{2}+\left(\frac{d f_{2}}{d r} \frac{d r}{d t}+\frac{d f_{2}}{d u} \frac{d n}{d t}\right)^{2}+\left\{\frac{d f_{3}}{d r} \frac{d r}{d t}+\frac{d f_{3}}{d u} \frac{d u}{d t}\right)^{2}$ in which t represents the time and v the velocity. Therefore,
(6) $\quad r^{2}=\left(\cos u \frac{d r}{d t}-r \sin u \frac{d u}{d t}\right\}^{2}+\left(\sin u \frac{d r}{d t}+r \cos u \frac{d u}{d t}\right)^{2}+\left[\begin{array}{cc}\frac{b}{2 \pi} & d u \\ d t\end{array}\right)^{2}$ $=\left(\frac{d r}{d t}\right)^{2}+\left(r^{2}+\frac{b^{2}}{4 \pi^{2}}\right\}\left(\frac{d u}{d t}\right)^{2}$.

From (5) and (6).

$$
\begin{equation*}
\frac{g b}{2 \pi} \log \left(\frac{r^{2}+\frac{b^{2}}{4 \pi^{2}}}{r_{0}^{2}+\frac{b^{2}}{4 \pi^{2}}}\right\}+\frac{g b}{\pi} u=\left(\frac{d r}{d \bar{t}}\right)^{2}+\left(r^{2}+\frac{b^{2}}{4 \pi^{2}}\right)\left(\frac{d u}{d t}\right)^{2} \tag{7}
\end{equation*}
$$

This is the differential equation of the motion.
Its integral furnishes solutions of the following:

1. What is the time of descent?
2. What is the erpuation of the curve of quickest descent?
3. What is the space passed over in a given time?
4. What is the velocity at any instant?
5. What is the normal pressure on the surface?

Problem: A wheelman rides down a helix surface along the line of pitch 30°, keeping his wheel at a constant radial distance of 30 feet. Find the time of descent and his velocity upon reaching the ground; the helix making one complete tmon.

Since r is constant and equal to r_{0}, we have:
(8) $r=r_{0}=30$.

$$
\mathrm{b}=2 \pi \mathrm{r} \tan 3 u^{\circ}=3,1416 \times 60+\frac{1}{3}, 3=108.824
$$

$$
\mathrm{g}=3 \underline{2}
$$

Equation (7) now becomes,

$$
\left[\mathrm{r}_{0}+\frac{\mathrm{b}^{2}}{ \pm \pi^{2}}\right]\left[\begin{array}{l}
\mathrm{d} \mathrm{n} \\
\mathrm{dt}
\end{array}\right)^{2}=\frac{\mathrm{gb}}{\pi} \mathrm{u}
$$

Substituting from (8)
$\frac{\mathrm{du}}{\mathrm{dt}}=\left\{\frac{32 \times 108.82}{3.1416 \times 1199.982}\right)^{\frac{1}{2}} \sqrt{\mathrm{u}}=.96 \mathrm{t}^{\prime} \mathrm{u}$.
$\left.\therefore \mathrm{t}=\frac{2}{96} \sqrt{\mathrm{n}}\right]_{0}^{2 \pi}=\frac{200}{96}, \frac{2 \times 3.1416}{}=5.2$ seconds ... time of descent.
From equation (4).
$\mathrm{v}=\sqrt{\frac{32 \times 108.82+.}{8.1416}} \sqrt{\overline{\mathrm{u}}}=\sqrt{6 t \times 108 . s^{2 t}}=83.4 \mathrm{ft}$. per second $=$ velocity at bottom.

[^1]It may be observed that the velocity is the same as that acquired by a body falling through the height h, and is independent of the radial distance, r. The time of descent is directly proportional to r; and both are independent of the weights. That is, we have the theorem:
 constent.

A Generalization of Fermatis Theorem. Jacob Westluyd.

Consider the function
(1) $\mathrm{F}^{\prime}(a, \mathrm{~A})=a^{\mathrm{n}(\mathrm{A})}-\left(a^{\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}\left(\mathrm{P}_{1}\right)}}+\ldots+a^{\left.\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}\left(\mathrm{P}_{\mathrm{i}}\right)}\right)}\right.$
where a is any algebraic integer and A any ideal in a given algebraic number field, $P_{1}, \ldots P_{i}$ are the distinct prime factors of A, and $n(A)$ denotes the norm of A. The theorem which we shall prove is that $\mathbf{F}(a, \mathrm{~A})$ is always divisible by A .

For the case when n and A are rational integers several proofs of the divisibility of $\mathrm{F}(a, \mathrm{~A})$ by A have been given*.

When A is a prime ideal the function $\mathrm{F}(a, \mathrm{~A})$ reduces to $a^{\mathrm{n}(\mathrm{A})}-a$, which, as we kuow, is divisible ly A.

Let us: first consider the case when $A=P_{1}^{g_{1}}$, where P_{1} is a prime ideal of degree f, and pi the rational prime divisible by P_{1}. Then

$$
\mathrm{F}\left(a, \mathrm{P}_{1}^{\mathrm{s}_{1}}\right)=a^{\mathrm{p}_{1}} \mathrm{p}_{\mathrm{s}_{1}}-a^{{ }_{1}^{\left.\mathrm{p} / \mathrm{s}_{1}-1\right)}}
$$

But

$$
a_{a^{p_{1}}}{ }^{f\left(s_{1}-1\right.}\left(p_{1} f-1\right), ~ m o d P_{1}^{S_{1}}
$$

and

$$
{ }_{a}^{p_{1} f_{s_{1}}} \equiv{ }_{a}^{1 p_{1}\left(\varepsilon_{1}-1\right)}, \quad \bmod P_{1}^{s_{1}}
$$

hence
(2) $\mathrm{F}\left(a, \mathrm{P}_{1}^{\mathrm{S}_{1}}\right)=0, \bmod \mathrm{P}_{1}^{\mathrm{S}}$.

Now, suppose $A=B . P_{1}^{S_{1}}$ where B is any ideal not divisible by P_{1}. Then we can easily derive the following relation:

$$
\mathrm{F}\left(a^{\substack{\mathrm{ps}_{1} \\ \mathrm{p}_{1}}}, \mathrm{~B}\right)-\mathbf{F}\left(a, \mathrm{~B} \cdot \mathrm{P}_{1}^{S_{1}}\right)=\mathbf{F}\left(a^{\substack{\mathrm{p}_{1}\left(x_{1}-1\right)}}, \mathrm{B}\right)
$$

[^2]
[^0]: *Zivet Mechanics, p. 103, Vol. III.
 \dagger These are partial derivatives.

[^1]: *Partials.

[^2]: * Dickson, Annals of Mathematics, 2l Series, Vol. 1, 1899, p. 31.

