or
(3) $\mathrm{F}\left(a, \mathrm{BP}_{1}^{\mathrm{s}_{1}}\right)=\mathrm{F}\left(a^{\substack{\mathrm{fs}_{1} \\ \mathrm{p}_{1}}}, \mathrm{~B}\right)-\mathrm{F}\left(a^{\substack{\mathrm{p}_{1} s_{1}-1 ;}}, \mathrm{B}\right)$.

If we let $\mathrm{B}=\mathrm{P}_{2}^{\mathrm{S}_{2}}$ we get from (3)

$$
\mathrm{F}\left(a, \mathrm{P}_{2}^{\mathrm{s}_{2}} \mathrm{P}_{1}^{\mathrm{S}_{1}}\right)=\mathrm{F}\left(u^{\mathrm{p}_{1}}, \quad \mathrm{P}_{2}^{\mathrm{S}_{2}}\right)-\mathrm{F}\left(a^{\left.\mathrm{p}_{1} \mathrm{p}_{1}-1\right)}, \quad \mathrm{P}_{2}^{\mathrm{S}_{2}}\right)
$$

and hence by (2)
(4) $\bar{F}\left(a, P_{2}^{S_{2}} \mathrm{P}_{2}^{\mathrm{S}_{1}}\right)=0, \bmod \mathrm{P}_{2}^{8}$

By a similar reasoning we also get,
(5) $\mathrm{F}\left(a, \mathrm{P}_{3}^{\mathrm{S} 2} \mathrm{P}_{1}^{\mathrm{S}}\right) \equiv 0 \bmod \mathrm{P}_{1}^{\mathrm{S}_{1}}$ and hence by (t) and (5).
(6) $\mathrm{F}\left(a, \mathrm{P}_{2}^{\mathrm{S}} \mathrm{P}_{1}^{\mathrm{S}_{1}}\right)=0 \bmod \mathrm{P}_{2}^{\mathrm{S}_{2}} \mathrm{P}_{1}^{\mathrm{S}_{1}}$.

We now assume that for an arbitrary a the function $\mathrm{F}(11, \mathrm{~A})$ is divisible by A , then if P be any prime ideal not contained in A we have by (3)
$\left.\left.\mathrm{F}\left(a, \mathrm{AP} \mathrm{P}^{-}\right)=\mathrm{F}^{\left(a^{1)^{\mathrm{fs}}}\right.}, \mathrm{A}\right)-\mathrm{F}_{\left(a^{\left.\mathrm{p}^{\mathrm{f}} \mathrm{s}-1\right)}\right.}, \mathrm{A}\right)$ and hence,
(i) $\mathbf{F}\left(a, \mathrm{AP}^{\star}\right)=0 \operatorname{mor} \mathrm{~A}$.

Now let $\mathrm{A}=\mathrm{CQ}^{t}$ where Q is a prime ideal and C prime to Q . Then,
$\mathrm{F}\left(a, \mathrm{AP}^{*}\right)=\mathrm{F}^{\prime}\left(a^{q^{\mathrm{F}^{\prime \prime}}}, \mathrm{CP}\right)-\mathrm{F}\left(a^{q^{\mathrm{F}(\mathrm{t}-1)}}, \quad \mathrm{CP}^{*}\right)$ where \& is the rational prime divisible by Q and the degret of Q, and since by our assumption the two terms on the right side are divisible by CP* it follows that,
(8) $F\left(a, A P^{*}\right)=0 \bmod C P^{*}$, and hence,
(9) $\mathrm{F}\left(a, \mathrm{AP}^{*}\right)=0 \operatorname{mor} \mathrm{AP}$.

Hence if $\mathbf{F}(a, A)$ is divisible by A when A contains n distinct prime factors it is also divisible by A when A contains $n+1$ distinct prime factors. Making use of (+) we then find that $\mathrm{F}(a, \mathrm{~A})$ is divisible by A for any A.

On the Class Number of tie Cfclotomic Numberfield

$$
K\left(e^{2 \pi i} p^{n}\right)
$$

Jacob Westluxd.
[By title.]
[Will appear in Transactions American Mathematical Society, Vol. IV: 2.]

