The Effect of Presstre on a Cammum Cflat.

Ry R. R. Rimasey.

This work is an extension of some work done in 1901 (Phys. Rev., Vol. 13, July, 1901), in which the pressure was raised to 300 atmospheres. In 1009 there appeared the work of Cohen and Swinge (Zeit. Ihys. Chem. 67, 5 pp. 513. Sept.. 1900), in which the cell was placed under a pressure

Fig. I.
of T50 atmospheres. Within the past year the Department of Physies has secured a compression jump extending to 1.000 kilograms per square centi meter (1 atmosphere $=1,03 \%$ kilogram per square centimeter) and inasmuch as Cohen and swinge's results were not in exact accord with my former results I thonght it well to repeat and extend the work.

The apparatus and plan of the experiment was practically the same as in my former work. The pump was a Ducretet compression pump fitted with a gange recording pressure up to 1,000 kilograms per square centimeter. The cell is made in the H form with very short connecting tube (Fig. I), so that it will go inside the piezometer (Fig. II), whose inside

Fig. 1"

Fig III.
diameter is three centimeters. The top of the cell is drawn to a capillary after the electrodes and cadimiun sumphate crystals are phaced inside. The cell is then immersed in kerosene inside the piezometer. A special cap was made for the piezometer. This cap has two insulated comections leading through it so that the cell can be connected to a potentiometer. The piezometer is connected to the pump with a copper tube of small inside diameter. The potentiometer (Fig. III), is so arranged that the cell can be compared with a standard Weston cell and also so that the difference between the cell under pressure and a second cell can be measured. This second cell is immersed in a quantity of kerosene and placed as close as possible to the piezometer. In this way any fluctuations due to change of room temperature will be avoided.

The results are given in Table I.
TABLE I.

Pressure in Killograms per Square Centimeter.	Change of E. M. F. in Volts.	$\text { Average } \frac{d e}{d p}$
100	7. $\times 10-$ Volts.	7. $\times 10^{-6}$
. 200	13.3	6.65
300	19.3	6.23
400	26	6.5
500	32.4	6.28
600	38.7	6.45
700	44.6	6.37
800	50.7	6.33
900	
1000	64.7	6.47
		Mean, 6.47

The results are also shown in a curve (Fig. IV). The average value of $\frac{d e}{d p}$ is 6.47×10^{-6} volts per kilogram per square centimeter.

In the previous work a cell was made of heavy glass tubing and subjected to pressure up to 75 atmospheres, at which pressure the cell burst. The result for this method was 6.02×10^{-3} volts per atmosphere.

The result for the piezometer method obtained at that time was 7.6×10^{-6} volts per atmosphere. Cohen and Swinge have found the value 6.28×10^{-6} volts per atmosphere for a pressure up to 750 atmospheres. The E. M. F.

Fig. IV.
when first placed under pressure is increased more than the value given above. The pressure cansed an increase of the temperature of the oil and a decrease of the temperature of the electrolyte in the neighborhood of the crystals. This has been shown by means of a thermo-junction. The exact results will be reserved for further investigation.

Both these temperature clanges affect the E. M. F. of the cell. After a time, a half hour say, the cell reaches a constant E. M. F. When the cell was first placed under a pressure of 1,000 the E. M. F. was changed 78×10^{-4} volts. The final change aiter thirty minutes was $6.4^{-7} \times 10^{-4}$ volts.

Indiana Cmixersit!, February 2, 1912

