A Theorem on Addition Formulae.

Ify Leslie MacDill.

The theorem stated here is a corollary of a general theorem on a certain class of functional equations, whose theory has not been completed at the time of writing.

Abel has shown that if a function, $\phi(x, y)$, has the property:
$\phi[z, \phi(x, y)]$ is a symmetrical function of x, y, and z; then there exists another function such that:

$$
f(x)+f(y)=f[\phi(x, y)]
$$

The corollary mentioned proves the converse of this theorem, and shows further, that a necessary and sufficient condition for the solution of an addition formula in the form:

$$
f(x)+f(y)=f[z(x, y)]
$$

where $z(x, y)$ is supposed given as a known function of x and y, is that the ratio:

$$
\frac{\frac{\partial z}{\partial x}}{\frac{\partial z}{\partial y}}
$$

shall assume the form of the ratio of a function of x alone, to a function of y alone, both of which functions have an indefinite integral, possessing each an inverse function, viz:

$$
\frac{\frac{\partial z}{\partial x}}{\frac{\partial z}{\partial y}}=\frac{u^{\prime}(x)}{u^{\prime}(y)}
$$

Furthermore, if we designate the inverse function by the bar,

$$
z(x, y)=\bar{u}[u(x)+u(y)]
$$

is another necessary and sufficient restriction on the function $z(x, y)$,
If the equation be given in the form:

$$
\begin{equation*}
\mathrm{z}[\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})]=\mathrm{f}(\mathrm{x}+\mathrm{y}), \tag{2}
\end{equation*}
$$

the necessary and sufficient conditions are:

$$
\begin{aligned}
& \frac{\frac{\partial z}{\partial s}}{\frac{\partial z}{\partial t}}=\frac{u^{\prime}(s)}{u^{\prime}(t)} \quad \begin{array}{l}
s=f(x) \\
t=f(y) .
\end{array} \\
& z(s, t)=\bar{u}[u(s)+u(t)] .
\end{aligned}
$$

The solution for the unknown function in (1), under the restrictions named above is

$$
\mathrm{f}(\mathrm{x})=\lambda \mathrm{u}(\mathrm{x}), \quad \lambda=\text { arbritrary constant, }
$$

and for (2) is

$$
\mathrm{f}(\mathrm{~s})=7 \mathrm{u}(\mathrm{~s}) \text {, or as Lefore; } \mathrm{f}(\mathrm{x})=\lambda .11(\mathrm{x}) .
$$

It will be further noticed that if $z[w, z(x, y)]=$ symmetric function, t'el

$$
f(x)+f(y)=f[z(x, y)] \text {, by Abel's theorem. }
$$

W a prove the conserse. Nesessarily
$z(x, y)=u[u(x)+u(y)]$.
$\mathrm{z}[\mathrm{w}, \mathrm{z}(\mathrm{x}, \mathrm{y})]=\mathrm{u}[\mathrm{u}(\mathrm{w})+\mathrm{u}\{\mathrm{u}(\mathrm{u}(\mathrm{x})+\mathrm{u}(\mathrm{y}))\}]=\mathrm{u}[\mathrm{u}(\mathrm{w})+\mathrm{u}(\mathrm{x})+\mathrm{u}(\mathrm{y})]$, which is a symmetrie function.
Indiana l'niversity.

