## Arplication of the Cauchy Parameter Method to the Solution of Difference Equations.

by T. E. Mason.

In the application of the Cauchy parameter methon to the solution of difference equations the following are the necessary stens:

1) Break the equation up into two parts, one of which gives a part $f_{1}(x)$ which may be readily solved and multiply the other part of the equation by the parameter $t$, so that the erfation

$$
f(x)=0
$$

## becomes

(a) $\quad f_{1}(x)+t f_{2}(x)=0$.
2) Assume a solution of the form

$$
\left.U(x)=A(x)+B(x) t+C(x) t^{2}+I\right)(x) t^{3}+\ldots . . .
$$

3) Substitute in the equation (a) and equate the coellictents of the different powers of $t$ to zero and solve. Then the parameter $t$ is made equal to 1.
4) The solution

$$
U(x)=A(x)+B(x)+C(x)+I)(x)+\ldots \ldots .
$$

must be shown to be convergent and to satisfy the original efuation.
In breaking up the equation it is necessary to make such division that the resulting solution is convergent. In equations with constant coefficients the solution of the resulting equations is, in general, no easier than the solution of the original equation, so that this method of solution is of little or no value there.

By a proper division of the equation the method of Cauchy will give the same results as the method of successive approximations. Let us illustrate this by means of the example

$$
\Delta \mathrm{U}(\mathrm{x})=\Phi(\mathrm{x}) \mathrm{U}(\mathrm{x}),
$$

where*

$$
\Phi(\mathrm{x})=\Phi^{\prime \prime} \mathrm{x}^{-2}+\Phi^{\prime \prime \prime} \mathrm{x}^{3}+\ldots \ldots .
$$

[^0]Let us write

$$
\Delta U(x)-t \phi(x) U(x)=0
$$

and assume for the solution

$$
\mathrm{U}^{\prime}(\mathrm{x})=\mathrm{A}(\mathrm{x})+\mathrm{B}(\mathrm{x}) \mathrm{t}+\mathrm{C}(\mathrm{x}) \mathrm{t}^{2}+\mathrm{D}(\mathrm{x}) \mathrm{t}^{3}+\ldots \ldots \ldots
$$

Then

$$
\Delta U^{\top}(x)=\Delta A(x)+\Delta B(x) t+\Delta C(x) t^{2}+\Delta D(x) t^{3}+\ldots
$$

Substituting in the equation we have
$\Delta \mathrm{A}(\mathrm{x})+\mathrm{t}[\Delta \mathrm{B}(\mathrm{x})-\phi(\mathrm{x}) \mathrm{A}(\mathrm{x})]+\mathrm{t}^{2}[\Delta \mathrm{C}(\mathrm{x})-\phi(\mathrm{x}) \mathrm{B}(\mathrm{x})]+\mathrm{t}^{3}[\Delta \mathrm{D}(\mathrm{x})-\phi(\mathrm{x}) \mathrm{C}(\mathrm{x})]+\ldots=0$.
Equating the coefficients of the powers of $t$ to zero we have

$$
\begin{aligned}
& 1 \mathrm{~A}(\mathrm{x})=0 \\
& \Delta B(x)-\phi(x) A(x)=0 \text { or } \Delta B(x)=\phi(x) A(x) \\
& \Delta \mathrm{C}(\mathrm{x})-\phi(\mathrm{x}) \mathrm{B}(\mathrm{x})=0 \text { or } \mathrm{JC}(\mathrm{x})=\phi(\mathrm{x}) \mathrm{B}(\mathrm{x}) \\
& \Delta \mathrm{D}(\mathrm{x})-\varphi(\mathrm{x}) \mathrm{C}(\mathrm{x})=0 \text { or } \Delta \mathrm{D}(\mathrm{x})=\phi(\mathrm{x}) \mathrm{C}(\mathrm{x})
\end{aligned}
$$

Solving we have

$$
\begin{aligned}
& \mathrm{A}(\mathrm{x})=1 \\
& \mathrm{~B}(\mathrm{x})=S_{\mathrm{x} \phi}(\mathrm{x}) \text {, where } S_{x} \phi(\mathrm{x})=-\sum_{\mathrm{i}=0}^{\infty} \phi(\mathrm{x}+\mathrm{i}) \\
& \mathrm{C}(\mathrm{x})=S_{\mathrm{x}} \phi(\mathrm{x}) S_{x} \phi(\mathrm{x}) \\
& \mathrm{D}(\mathrm{x})=\mathrm{S}_{\mathrm{x}} \phi(\mathrm{x}) \boldsymbol{S}_{\mathrm{x}} \phi(\mathrm{x}) \mathrm{S}_{\mathrm{x}} \phi(\mathrm{x})
\end{aligned}
$$

$$
\therefore U(x)=1+S_{x} \varphi(x)+S_{x} \phi(x) S_{x} \phi(x)+S_{x} \phi(x) S_{x} \phi(x) S_{x} \phi(x)+.
$$

This series has been proven to be convergent* and gives a particular soluthon of the linear homogeneons equation of the first order.

But this paraneter method may be applied in such a way as to obtain solutions different from those obtained by the ordinary method of successive approximations. We shall illustrate this remark by the solution of the equation

$$
د^{2} U(x)-a U(x)=x^{n} \ddagger, a<1 .
$$

Let us write

$$
د^{2} U(x)-x^{n}-\operatorname{taU}(x)=0
$$

and assume the solution

$$
\mathrm{U}(\mathrm{x})=\mathrm{A}(\mathrm{x})+\mathrm{B}(\mathrm{x}) \mathrm{t}+\mathrm{C}(\mathrm{x}) \mathrm{t}^{2}+\mathrm{D}(\mathrm{x}) \mathrm{t}^{3}+\ldots .
$$

[^1]Substituting in the equation and equating to zero the coefficients of the powers of $t$, we have

$$
\begin{aligned}
& د^{2} A(x)-x^{(n)}=0 \quad \text { or } \quad د^{2} A(x)=x^{(n)} \\
& د^{2} B(x)-a A(x)=0 \text { or } د^{2} B(x)=a A(x) \\
& د^{2} C(x)-a B(x)=0 \text { or } \Delta^{2} C(x)=a B(x) \\
& \Delta^{2} \mathrm{D}(\mathrm{x})-\mathrm{aC}(\mathrm{x})=0 \text { or } \Delta^{2} \mathrm{D}(\mathrm{x})=\mathrm{aC}(\mathrm{x}) \\
& \text {................... ............... } \\
& \text {..................................... } \\
& \Delta^{2} \mathrm{~A}(\mathrm{x})=\mathrm{x}^{(\mathrm{n})} \\
& د A(x)=\frac{x^{(n+1)}}{n+1}+p_{1}(x) \\
& A(x)-\frac{x^{(n+2)}}{(n+2)^{(2)}}+p_{1}(x) \cdot x+p_{2}(x) \\
& د^{2} B(x)=\frac{a x^{(n+2)}}{(n+2)^{(2)}}+a p_{1}(x) \cdot x+a p_{2}(x) \\
& B(x)=\frac{a x^{(n+4)}}{(n+4)^{(4)}}+\operatorname{ap}_{1}(x) \frac{x^{(3)}}{3!}+a p_{2}(x) \frac{x^{(2)}}{2!} \\
& د^{2} C(x)=\frac{a^{2} x^{(n+4)}}{(n+4)^{(4)}}+a^{2} p_{2}(x) \frac{x^{(3)}}{3!}+a^{2} p_{2}(x) \frac{x^{(2)}}{2!} \\
& C(x)=\frac{a^{2} x^{(n+6)}}{(n+6)^{(6)}}+a^{2} p_{1}(x) \frac{x^{(5)}}{5!}+a^{2} p_{2}(x) \frac{x^{(4)}}{4!} \\
& \therefore U(x)=\frac{x^{(n+2)}}{(n+2)^{(2)}}+\frac{a x^{(n+4)}}{(n+4)^{(4)}}+\frac{a^{2} x^{(n+6)}}{(n+6)^{(6)}}+\ldots .+p_{1}(x)\left[x+\frac{a x^{(3)}}{3!}+\frac{a^{2} x^{(5)}}{5!}+\frac{a^{3} x^{(7)}}{7!}\right. \\
& +\ldots \ldots]+p_{2}(x)\left[1+\frac{a x^{(2)}}{2!}+\frac{a^{2} x^{(4)}}{4!}+\frac{a^{3} x^{(6)}}{6!}+\ldots . .\right] \text {. }
\end{aligned}
$$

Since $a<1$ these series converge, and it can readily be shown by substitution that this does afford a solution of the equation.

If we denote the solution of the previous equation by $U^{(n)}(x)$, then the solution of the equation

$$
د^{2} U(x)-a U(x)=P(x), a<1
$$

where $P(x)$ is a polynomial in $x$ of the form

$$
P(x)=a_{0}+a_{1} x^{(1)}+a_{2} x^{(2)}+a_{3} x^{(3)}+\ldots \ldots+a_{m} x^{(m)}
$$

may be written in the form

$$
\mathrm{U}(\mathrm{x})=\underset{\mathrm{n}=0}{\mathrm{~m}} \mathrm{a}_{\mathrm{n}} \mathrm{U}^{(\mathrm{n})}(\mathrm{x})
$$

The $2 \mathrm{~m}+2$ periodic functions combine into 2 independent ones.
The solution of other examples would follow the same method. Bloomington, Ind.


[^0]:    *The general linear homogeneous difference equation of first order may be transformed to this form by a transformation of the form

    $$
    \mathrm{g}(\mathrm{x})=\mathrm{x} a^{\mathrm{x}} \mathrm{a}^{\mathrm{x}} \mathrm{x}^{\mathrm{m}} \mathbf{f}(\mathrm{x})
    $$

    where the $a$, a and $m$ are constants to be determined for the particular equation.

[^1]:    *Carmichael, Transactions American Mathemathical Society, Vol. 12, No. 1, p. 101. If in that diseussion we put $\mathrm{a}=1, \mathrm{~m}=0$, the two problems are identical.
    $\ddagger_{x^{\prime}}(n)=x(x-1)(x-2) \ldots \ldots(x-n+1)$.

