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A New Problem in Hydrodynamics with Extraneous

Forces Acting.

By Edwakd Lee Haxcock.

The solution of most problems in liydrodynamics depends upon ilm

proper coml)ination of the equations of motion of the fluid interior of

a given closed surface with the difi"(>renlial eciuatiuii of the surface, or

with tlie e(iuati(ins expressing the Loundary conditions.

Lord Kelvin has shown that the differential equation of the surface

for )ioth compressilile and incompressible fluids has the following form:

u.F'(x) + v.F'(y) -f w.F'(z; + F'(t) =
wliere (t) is a variable parameter of the equation

F (X, y, z, t)=0.

In the ti'catment of problems of the motion of incompressible fluids

in three dimensions, where the surface under discussion is spherical

or nearly so, the usual particular solutions of Laplace's equation

( ^72 -_ )^ such as, zonal, tesseral and spherical harmonics, are

adequate, .since in these cases the velocity-potential satisfies Laplace's

equation. The solution used in any particular case depends upon the

symmetry of the boundary conditions. Where the surface differs much

from the splierical form as in ellipsoids, ellipsoidal harmonics are used.

Problems of this kind have been extensively investigated.

In discussing the anchor ring Mr. "S^'. M. Ilick.s^ has derived modified

forms of the zonal, tesseral and spherical haimunics by means of which

the potential both outside and inside the ring may be completely inves-

tigated. The same problem has been solved by Mr. F. W. Dyson- hj

using elliptic integrals.

The problem is much simplified when the motion takes place in a

single plane, in which case, if the boundary consists of a straight line,

two parallel straight lines, or is rectangular, the velocity-potential may
be expressed as a Fourier's series or a Fourier's integral.

1. Phib Trans. ]893.

2. Phib Trans. 1881, Part III.

7—A. OK SciENcr, '03.



98

In other cases there is no direct metliod of procedure. The inverse

process of finding what boundary conditions Avill give Ij^uown solutions

of Laplace's equation is used. Avitli the hope uf finding the desired solu-

tion. The method of images is also applicable to some cases, more

especially perhaps in the case of rotational motion.

For the irrotational motion of a perfect liquid there always exists a

velocity-potential which satisties the equation

The potential o and the rfctaugalar velocities u, v and w may be

found from the given conditio.is, for all points of the interior. The

potential being always least at the boundary the lines of flow and eqlii-

potential lines liegm and end there. This is true whether the motion

is "steaciy" or not arid true, therefore, when the extraneous force is

gravity.

Much woi'k has been done on the motion of many of the regular solids

immersed in a liquid, when acted upon liy a system of impulsive forces

and also by constant forces. The motions of the liquid in the neighl)or-

hood of such solids has also been discussed. Both tidal Avaves and waves

due to local causes have been investigated and their properties discussed

to some extent. The related problem of the effect of high land masses

upon neighlioring bodies of water has been worked out by Professor

R. S. Woodward and others.

Perhaps the most familiar problem of the effect of an extraneous

force upon a body of liquid, is the "Torricelli Theorem" on the efflux of a

liquid fi'om an aperture in the side or bottom of the containing vessel.

There the vessel is kept filled to a constant level the motion becomes

steady making --- ^0, -^— = and -^^^ = 0; and giving the well-known re-
dt dt dt

suit q''^ = 2 gz, where q is the velocity. In case the liquid rotates under

the influence of gravity angular velocity is introduced, giving ~z —= 2w.

Showing that a velocity potential does not exist, and that such motion

could not take place in a perfect liquid.

Cases of motion where no extraneous forces are acting have been com-

pletely worked out by methods of conjugate functions and the theory of

images, iln these cases the lines of flow and equipotential lines are

orthogonal systems of curves, and methods of plotting such are easily

devised. But when extraneous forces are acting these lines no longer
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belong to ortliogoual systems of eiu-A-es and no method has yet lieen de-

vised by means of which tlie lines could he drawn under specified condi-

tions.

It was lioped that some graphical method applicable to all cases

might be found in connection with the present work, Init thus far none

has been discovered that is at all general. I have found the eciuipotential

lines and lines of flow for a rectangular area where a constant extrane-

ous force is acting.

Taking the liquid as incompressible since the external forces is con-

stant the motion is steady and the velocity potential may be made to

satisfy the equation

^ (Vy _
dx^'^cly2 — "

and

—

^ = ku, -^ = kw.
t5x f^z

A constant must he added to one of these velocities to express the effect

of the constant f<jrce. This is more clearly seen perhaps in the case of

vertical motions due to the force of gravity. In this case the constant to

be added to w is of course g and since this is a constant Laplace's equa-

tion is still satisfied. The lines of flow and equipotential lines are no

longer orthogonal, but are, as we shall preseutlj- see, inclined at different

angles, lieing tangent at some points of the interior.

If the area be taken in the sphere of attraction of the earth and near

enough so that the attraction may be taken as constant we shall have

Uzrik -L-
dx

V = k '— + kpg.
dz^ ^

where satisfies Laplace's equation.

Professor C. 8. Slichter^ has shown that the motions in an area

A B C D, Fig. 1, filled with sand and having water flowing through it,

entering along A B and flowing out along A D—the sides B C and C D
being impervious—may be fully discussed by replacing the sand and water

by a perfect liquid having a velocity potential, and that the velocity po-

tential in this case would be identical with the pressure function. This

being true, it is possible to find the pressure at any point in the interior

as well as the component velocities at these points, just as soon as the

1. 19th Annual Report, U. S. Geological Survey, Part II.
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boundary conditions are knoAvu. Accordingly in Avliat follows the velocity

potential will be replaced ))y the pressure function.

If the section be horizontal, the problem may be treated in the usual

way, but in case the section is vertical the extraneous force, gravity, gives

a system of curves which are not orthogonal.

Let D C = a and A D == b, and suppose the head of water along A B
zero. The boundary conditions then to be satisfied are:

P — when x z==

P 1= when x = a

P = h when z ^ b

w = when z =
And since the area is a rectangle P, u and w are expressed as Fourier's

series

:

. n- (b — z)n =3 cc smh
P = -^ 2 ^. sin^-

11 — 1 11^ cosh -;5
2a

This differentiated with respect to x and z for u and w gives:

. - n-(b — z)
, , n = GO smh „ „ ^
4gf)k .^ 2a UTTx

u = —2^ Z ^ • CCS ~K~-
n ^

ij-b 2a
11 — 1 11 cosh ^^—

2a

, n T ( b — z

)

. , n ^ GO cosh ;

4gpk ^ 2a .
nTTx

.

^^=-^ S, H^- «"^^^^^'^^
11 ^ 1 u cosh

2a

In the above equations n represents eacli of the successive odd numbers,

a and b being the sides of the rectangle may have any desired value. But

for simplicity they were in the present case taken equal to ten, and for

the same reason g/^k was taken equal to unity.

Making these changes the equations become:

. , n-(10 — z)
„_ u = 30 smh —

„ 80 ^ 20 . UTTx

TT''
, , , IIT 20

11 =^ 1 u- cosh --
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. . n-(10— z)

4 ,^ 20 n-x
U= — Z . cos -jrpr-

TT
, , IITT 20

n = 1 n cosh —

n-(10— z)

4 ^^ = "- ^^^'^ 20 . n.x ,,

'''-If -, TUT-- •'^"^-2^ + ^

n ziz 1 u cosli —

From these equations the vahies of P, u and w were found at each of

the one hundred joints given in the area. This was done by computing

the series for x = 1, 2, ;^. 4, 5. (>, 7, 8. 9, 10 when z -- 1, and then Avhen

z = 2, 3, 4, 5, 0, 7, S, 9, 10, i. e., by making one hundred computations of

each .series. The value of u and w being found for eacli point it was not

difficult to determine the resultant in both magnitude and direction. This

gave the flow at each of the points of tlie area. We find from Fig. 1

that there is actual motion throughout the whole area.

The motion, indeed, at some points is very slight, but there is no

point in the entire area where there is no motion. This is imporrant if we

regard this as an innnense area in homogeneous ore-bearing rock. It

indicates that at every point of the area the water is continually moving

and coming into contact with new rock surfaces, thus increasing its

capacity for dissolving the mineral salts from the area. From the length

and direction of the arrows it is seen that at the corner D the lines are

crowded down closer together than at A. This shows that the constant

force gravity has distorted the tield, causing the lines of flow to be con-

centrated at the bottom, and showing that underground waters must take

very long journeys before reaching their destination and so come in con-

tact with a very great area of rock surface.

As before stated, the relations of the equipressure lines to the lines

of flow differ from that found in horizontal planes. From Fig. 1 it is

seen that the angle between the systems of curves varies from nearly a

right angle to two right angles, that is. to tangency. In fact, there is in

the area what may be called a line of tangency meeting the sides A D
and D C. These lines of flow as before indicated taken at equal dis-

tances along A B crowd near each other down near D, showing the

etfect of gravity upon them. If we cause the constant force g to cease to

ai?t in the case under consideration, the lines of floAV would be arcs of

circles cutting A B and A D at equal distances from A. The effect of
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gravity then is to pull these ares of circles out into cycloidal-like curves

crowding near 1) C. As a matter of fact the curve drav^-n from x = 5,

z = 10 is nearly a cycloid. Those in the upper left-hand corner being too

low and long and those in the lower right-hand corner too short and high

for cycloids.

The lines of pressure are hyperbola-like curves drawn for pressures,

1, 2, 3, 4, etc., all the curves beginning and ending in the boundary.

It is easy to see that we maj^ take a similar area a b to the right of

A B C D and leaving an open face similar to A D and an impervious bot-

tom and water at zero pressure along the top. We should then have these

two areas one on each side of B C with the liquid flowing in op])osite

directions. The liquid in each area flows directly down B C and so the

motion will not be interrupted if B C be removed. That is, the method

of images is applicable horizontally. If. however, a similar area to A B
C D be taken just below C D we can not say that the method of images

as usually applied holds true. We may regard A D in the upper area as

an absorbing slit and A D in the lower area as a similar slit and the

position C D between them as a mirror the corresponding parts of A D
in the upper and lower slits are not found at equal distances above and

beh)w C D. Tliey are found drawn down by gravity so that the

method of images must be modihed for vertical distributions. Bj'

9 9
integrating u with respect to z between the limits b and tt; • b; r,. b and

g
ZTTT. b, etc., tlie amount of flowage from eacli of the ten equal divisions of

A D may be calculated. And in a similar way the amount of liquid going

in at each of the ten equal divisions of A B is obtained by integrating

9 9 8w with respect to x between the limits a and T7;-a.; tt. • a and tt; • a,

etc. The equations for the flowage and the amount absorbed are then:

, n TT (b— z)n= Gc cosh ^ -,A

f_ fd „^, _ Sag^k ^ 2a__
.os^L^L^r

2a
J c

/

J
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9 9
where c varies from t . 1j or — . a down to zero, and d varies from a or b

down to — . b or . a. Solving the ten equations for the ten ditferent

values of f and a, we get the following table:

No.... 1 2 3 4 5 6 7 8 9 10

a .958 .875 .800 .726 .6«4 .611 .566 .535 .512 .502

f .042 .126 .216 .315 .424 .556 .716 .935 1.24 2.07

Table I.

It will be seen from the table by countiiiLC the divisions from A as 1. 2. 3.

etc., that nearly half the water flows through the first three divisions

and that there is a gradual decrease toward B. The relative value of f

from the different divisions shows a very slight tlowage from the iirst

division with a rapid increase from each of the succeeding divisions until

the two lower divisions at 1) carry off one-half of the amount aljsorbed.

This shows in a very vivid way the pnmounced effect of gravity or any

constant external force upon a liquid. The amount going in along A B is

of course eciual to the amount flowing out along A D. since the equation

of continuity must hold true.

It is interesting to note that the curve given by plotting the tlowage

from A D is very nearly a tractrix or antifriction curve. See Fig. 3. It

would undouldedly be an exact tractrix had the number of divisions of

A D been taken small enough, i. e., if twenty or thirty equal divisions had

been taken Instead of ten.

In Fig. 3 the line O X corresponds to the distance A D in Fig. 1, and

the y-coordinates of the curve are given by the values f taken from

'j.able I.

Fig. 4 shows the distribution of absorption into the area A B C D
along A B, the line A B of the figure corresponding to the line -x B of the

area. The y-coordinates of the cui've being taken from Table I as the

different values of a.

Figs. 3 and 4 then show the distribution of absorption ana flowage

along A B and A D.

E'xtending this method by taking A B one hundred and keeping A D
ten, we get approximately an artesian well area. The values of f and a

for this case are given below:

6 7 8 9 10

005

.616 .762 .981 1.82 2.53

No..
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Table II.

It will be seen that the amount tlowing in at the first division of A B

is al out tAYo-thircIs the total amount floAving- into the entire area, and that

this snpplits the f.owage for the first nine divisions of A D while the

tenth division of A D gives out the water from j\ the distance A B. If

the rock in the area be soluble it is easily seen that the water flowing

from this lowest division of A D will be very highly charged with mineral

matter, while the remaining two-thirds that flows out above will be very

slightly charged. This is more especially evident when the long sweeping

paths of the water are considered compared with the very short paths of

the waters of the first division of A B. We have this represented graph-

ically in Fig. 5, where the lines of flow are drawn for the case where

A B = 100 and A D = 10, or a typical artesian area. If A D be a crevice

in the rock it is evident that this place will be favorable for the deposition

of the mineral salt dissolved in the Avater since the pressure is released at

this point and there is apt to exist some reagent that aaMII cause a precip-

itate of the ore. This reagent may exist in the crevice itself or in the

opposite wall.

In Fig 6 the curve has been plotted for the flowage from A D for

the case A D = 10 and A B = 100. This does not differ much from the

case where A D = 10 and A B = 10, except that the convexity dowuAvard

is somewhat more pronounced, making the curve less like the tractrix.

Ten equal divisions were taken along A D and the A'alues of y taken

from Table II corresponding to different A'alues of f.

The absorption curve for the case A D = 10 and A B = 100 is given in

Fig. 7. Here the scale has been somewhat changed due to the large

A-alue of A B. The distance A B was divided into one hundred equal

divisions, while the same vertical scale was used for y as in the preceding

cases. The values of y were taken from Taljle II, being the different

Aalues of a in that table.

The rapid fall of the curve at first and then more gradual fall corre-

sponds to the values of a found in Table II and also emphasizes the

relatlA'e slowness of the motion of the Avater in the right-hand half of the

area A B C D, Fig. 5, as compared Avith that of the left-htuid half.

The method used in the preceding cases might be extended to areas of

different dimensions, but the results Avoiild not differ much from those

already stated.
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If A B be taken iirertter than one liundrefl. while A D remains ten,

or if we have anj- similar relation between the two. it will l)e more ad-

A'autageoiis to use the Fourier's integral instead of the Fourier's series,

since for such a difference between A B and A D the area may be con-

sidered as an intinite strip.

The results obtained are especially interesting in connection with the

motion of ground water, because of their bearing on the theory of ore

deposits, artesi.au wells and drainage flumes. The fact that sand through

which water is flowing, as before indicated, can he replaced by an ideal

liquid having a Aelocity-potential which is identical with the pressure

opens a new field of investigaiicn in Ir.drndyiiamies from which many

important results will be obtained.

Tiq.-l
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Ba-4.

T,^-S
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