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On Linear Difference Equations of the First Order With
Rational Coefficients.

By Thos. E. Mason.

This paper treats of the behavior of the sohitions of a first order linear

difference ecjuation witli rational coefficients as the variable ajiiiroaches

infinity in a strip parallel to the axis of imaginaries. A unique characteriza-

tion of certain sohitions is obtained to within the determination of a finite

number of constants. The same problem has been discussed by INIellin.* The

treatment here given is much shorter and simpler. The proof has been sim-

plified by making use of the asymptotic expansion for the gamma function

and by Itmnia II fovmd in §1 of this paper. The use of this lemma has also

permitted the removal of some restrictions made by Mellin.

Carmichaelf has shown that certain solutions of the first order homo-

geneous linear difference equation are unifjuely characterized by their be-

havior as the variable approaches infinitv in the i)ositive or the negative

direction parallel to the axis of reals.

§1. Lemmas.

Lemma I. If x = z + iz', xj = uj + ivj, x'j = u'l + iv'j, then

lim
z'

|(x—xi ) . . . l(x—xna ) (m—n)(—z+ A)—k -

z' e

(X-Xi') . . . |(x-x'„ )

0+(m—n)z+k
e = c,

where
z'—vj z'—v'j n m

Oj = tan-' ,
0'j = tan-' and = ^: v'jO>j—iSviOj,

z—uj z—u'j
j
= l j

= l

and uiieret

n m
k = 2R (x'j)— :SR (xj).

j=l j=l
*Acta Mathematica 15 (1891): -317-384. S;e §§1-3 of the paper. In §3 of an article in Mathenia-

tis?he Annalen 68 (1910): 305-337, Mellin has defined a function by means of the linear homogeneous
equation

F(x-hl)—r(x)F(x)=0,

where r (xJ has the particular form

(x—xi) .... (x—xm)
r(x) = ±

(x—x'l) . . . (x—-x'n)

tTransa?tions of the American Mathematical Societj' 12 (1911): 99-134.

}R(x) is U:ed to denote the real pa^t pf x.
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We make use of the following form of Stirling's fornnila:

X — Xl — 5 — X + Xi

|(X — Xl) = (x — X,) c v'2x (1 + Ex),

where e.\ approaches zero as x approaches infinity in such way that its distance

from the negative axis of reals approaches infinity.

Then we have

I _ — X + Xl + ^ X — Xl
I

—
lim |i(x — Xl) . (x — Xl) e

!
= c.

X = 00
I j

Set X = z + iz' and xi = Ui + ivi, where z, z'. Ui, Vi are real, and let x approach

infinit}', A < R (x) < A + 1; then we have

lim —z

—

iz'+ U|+ ivi+ 2 z+ iz'—Ui—iv

(x—Xl) . (z+ iz'—Ui~ivi) e

Hence

c,

lim I. (—z—iz'+ u,+ ivi+ i) (log ,(z—u,)=+(z'—vi)=+iOi)
zi==fcx ||(x—Xl) . e

Z—Ui'

e

where
z" — v,

Oi = tan-' .

Z — Ui

Now z — Ui >(), Iherefore when z' = + ^c
, Oi = — and when z' = oo

,

2

Oi = — . Thus in the above limit after mulitplving the factors in the
2

exponent of e, we can replace z'O, by — |z'| . Then by reai-rangcmcnt and sim-

plification we can write

lun
z

Z + Ui + ^ Iz'l Z Ui ^ Oi Vi

e 2 e=>= X
I

|(x Xl). z'

Making use of limits of this form for each of the ganuna functions in the

expression in the lemma, we have the lemma.

Lemm \ II, // p (x) is (I periodic funclion of {>crio<l 1 ii'hirh is nnalyiic

everywhere in the finite plane and as z' = =t x (x = z + iz') satisfies the relation*

(1) L
I

— tx|z'l — Qz'l
z' = ± cc |p(x) e

I

= b,

h finite, t positive, then p(x) may be written in the form

c] 2xijx

(2) p(x) = i: Bje

j
= -i'

*I, 1 -^ ± x <lonotes the greiteU value upproachcil as z' r==: ± ^-



where q is the greateat integer < —
= 9
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Q
.

t Q— and V IS the greatest integer < — -] ;

2% = 2 2t.

and conversely, every periodic funetiun of period 1 which can be written in the form

(2) is analytic in the finite plane and satisfies a relation of the form (1).

Since p(x) is periodic of period 1, it takes in any period strip all the

values it takes anywhere in the finite plane. The transformation

2xix
w = e

carries a single period strip of the x-plane into the whole w-plane, z^ = + oo

corresponding to w = 0, and z' = -^ to w = oo

.

We can now write

P(x) = f(w)

and since f(w) can have only the singular points zero and infinity it is ex-

pansible in a Laurent series
00

f(w) = S Bjw^

valid throughout the finite plane except at zero.

Using the fact that
— 2xz'

we get

|p(x) e

when z' is positive, and

—tx z

'

—tx z'

-Qz'

Qz'

I

t Q
I

— + —
=

I

f (w) w 2 2x

|p(x) e

when z' is negative. As z' = + oo , w = and

I
t Q

I

f(w) w

Ql

L + —
w = o |f (w) w 2 2x

I

= b.

Hence the part of the series f(w) with negative exponents can not have co-

t Q
efficients different from zero for

j greater than the greatest integer < 1 .

= 2 2 X
As z' = —oo, w = 00 and

•t Ql

f(w) w 1 2 2xJ = b.

Hence the part of the series f(w) with positive exponents can not have co-

t Q
efficients dififerent from zero for

j greater than the greatest integer <
.
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Therefore we can write

q : q 2djx
pfx) = S Bj\aJ = i: Bje

j=-r j=-r

t Q .

where q is the greatest integer < and r is the greatest integer
= 2 2t:

t Q
< 1 . From tlie definition of Q given in §2 the vahies of (j and r will

= 2 2z

not differ by more than 1 in the prohlciii of this i)aper.

The converse is o})vious.

§2. Homogeneous Equations.

Theorem. Every Jimt order linear homogeneous difference eq mil ion rrith

rnlional coefficients, as

F(x + 1) - r(x) F(x) = 0,

ivhere r(x) can he irritten in the form

(\ — Xi) . . (X — Xm)
r(x) = a . a = he 'Q, — t.<Q<t.,

(x — X',) . . (X — X'n)

has a solution Fix) irhich has the following properties, provided that each of the

m — n (2

numl)ers ± is greater than zero, or in case m = n that Q = and
4 2x

n m
k = S R(x'j) — >: R(xj) < 0.

j=l j=l

I. F(x) is analytic in the finite [tart of the \-ptane defined liy R(x)>D,

where D is the greatest among the real parts of xi. x.. xm.

II. ^.s x approaches infinity in the strip parallel to the axis of imaginaries

defined by A<R(x)<A+ l (A>D) the absolute value o/F(x) remains finite.

Every such function F(x) can he wrillen in the form

|(x — x,) . . . . 1(X—Xm) c| 2djx
Frx) = a'' — — X Bje

(x — x'J .... ;(x — X,',) j= —

r

m — n Q
where ci is the qreatest integer* < iiiid v the f/rrnlesl inlerger*

4 27C

m — n (^

< + .

4 2-

m—n Q
*The inequality sign should be replaced by the equality sign in ca^e each quantity =i= —

4 2x
is :»n intereer and at ihe same time th? exponent c.[ z' in the expression in lemma I, §1, is > ,that is

when (m—.n) (—z +1 /2)— k> tor all valje-i of x in the s: rip define 1 in c )n(lition II nf the theorem.
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Th^ quantity a F(x) evidently satisfies the difference equation of the

theorem, where

F(x) =
l(x-x,) |(x— Xm)

Kx-xl) (x-xf.)

a F(x) also satisfies I since in the region defined the gamma functions in the

X

—

numerator are analytic and in the denominator are different from zero, a F(x)

being a particular solution of the difference equation, the general solution is

F(x) = p(x)a F(x),

where p(x) is an arbitrary periodic fun(;tion of period 1.

From the limit in Lemma I, §1, it is evident that I and II will be satisfied

if, and only if, p(x) is chosen so that it is analytic everywhere in the finite

plane and when x = oc , A < R(x)< A + 1, satisfies the relation

a p(x)

z'^ ± CO m — n
(m — n)(— z+ ^) — k 0+(m — n)z+ k x|z'

1 e e 2

[I x| z -Qz'
where b is finite. This can be written a I

= h c

b,
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2xix
shown by making the transformation \v = e and equating the coefficients of

like powers of w in the two transformed expressions for p(x). This gives a

system of p linear ecjuations to determine Ai, A>, . . ., Ap, where the p of

Mellin's paper is equal 2q+ l.

§3. Xf)N-HOMo(;E.\Eous Equations.

Theorem. //r(x) and s(x) are rational functions of the form*

fx — X,) ... . (x — xm) (x — X,") . . (x — x"g)
r(x) = a

, s(x) = b-
(x — x>i) ... (x — x'n) (x — X',) . . . (x — X'n)

where m > n, then the series

X s(x+t)
S(x) = 2

t = o r(x+t) r(x+t — 1) ... r(x)

is always wn iforinly convergent for \a[>l and for |al = l when m>n, and is uni-

formly convergent for !a =1, m = n, when k — (g — n)>l, where

n ni

k = :£ R(xj') — :^ R(xj).
j=l j=l

// the conditions for the uniform convergence of 8(x) are fulfilled, then every

first order linear non-homogeneous difference equation with rational coefficients, as

F(x+1) — r(x)F(x) = s(x),

has a solution F(x) which has the foUoiring properties:

I. F(x) is analytic in the part of the finite x-plane defined by R(x)>D, where

D is the greatest among the real parts of Xi, Xj, .... xm.

II. // X is confined to the strip parallel to the axis of iniaginaries defined by

A<R(x)<.\+ l (A>D) the absolute value of F(x) remains finite as x approaches

infinity.

Every such solution F(x) can be written in theform

|(x — Xi) |(x — xm) q 2T:ijx «: s(x+t)
F(x) = &""— = ^ Bje

l(x
— x>,) Kx—x'n) j = -r t = o r(x+t)r(x+t — 1). .r(x)

r and q being defined as in the theorem in §2.

In the equation

F(x+l)-r(x)F(x) = s(x)

make the substitution

F(x)=f(x)u(x),

where f(x) is the solution of the homogeneous equation given in the theorem

*If r(x) and s(x) do not already have a common denominator t\tc\- cMn c i^ily lie re lu mmI to ex-
pressions with a common denominator.
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in §1. This gives

f(x+l)ufx+l) — r(x)f(x)u(x) = s(x).

Since f(x+l) — r(x)f(x)=0 we can divide by r(x)f(x) and we have

s(x)

u(x+l) — u(\) =
r(x)f(x)

X s(x+t)
u(xj = p(x) — S

t = o r(x+t)f(x+t)

where p(x) is an arbitrary periodic function of period 1. Xow
f(x+t) = rfx+t—l)f(x+t^l) = = r(x+t—l)r(x+t—2)
Making this substitution in the preceding equation we have

yr. s(x+t)
u(x)=p(x)- ^

r(x)f(x)

t = o r(x+t) r(x+t — 1) r(x)f(x)

If we choose p(x)=0 we have
oc s(x+t)

F(x)=f(x)u(x)=-S
t = o r(x+t) r(x+t — 1) . . . . r(x)

F(x) is then a solution satisfying I and II provided that

s(x+n)
S(x) = uo(x)+u,(x)+u.,(x)+ un(x)=-

r(x+n) r(x+n — 1) . . . r(x)

is analj'tic. 8(x) is analytic jirovided that it converges uniformly in any

closed region T lying in the strip defined by the relation A<R(x)<A+l.

In the region T in the strip under consideration the following ratio of the

(t+l)th term to the t-th term holds for everj- value of x in that region.

t + l 1 s(x+t)

r(x+t) s(x+t — 1) I

I

1 f n—m n—m—

1

]

(5) =\—\t — fk — n—

m

R(x)]t + I-

|a[
J

( ! l,(x) MU+- +^+ ... M,
i

t t== J

I

where k has the same meaning as in §1 and 1 = g — n. When n =m (5) becomes

1^+1
I

1 If —k+1 11 ]\

(6) 1

=—-|^ l-\ h . . . • terms in — , — , etc.;- 1

.

u.
I

|a|
I

I t t^ t'^ II

In considering the value of this ratio we shall need to examine the fol-

lowing cases:
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(1). When n>m (5) shows the ratio to be greater than 1 and therefore

the series S(x) diverges.

(2). When n<m (5) shows that for increasing t the ratio approaches

zero and therefore the series S(x) converges.

(3). When n =m we see from (6) that the convergence of the series de-

pends on the value of ]a .

If |a|>l the ratio ultimatelj' approaches a quantit\- less than 1 and

therefore S(x) converges.

If |a|<l the ratio is greater than 1 and S(x) diverges.

If |a| = l the series will converge when* k — 1>1.

In the cases where S(x) converges, except where n = m and|a|=l, the

ratio ut+i /ut has been shown to approach a quantity which is less than

1 for every x in T. Hence an M and an r can be found such that

.M+ Mr+Mr^' +Mr-' +Mv* +
is a convergent series of positive constant terms which is greater term by

term than tlie series

(7) Uo+ U,+ U:+ U.-.+

for every x in T. Therefore the series .S(x) converges uniformly' in T and is

an analytic function in that region since each term is analytic in T. In case

n =m and |a! =1 we see from (6) that the coefficient of 1 /t does not contain

X but that the coefficients of higher powers of 1 ^t do. These coefficients are

polynomials in x. If we replace each x by a ciuantitj* which is greater

than the greatest absolute value of x in T and replace the coefficients of the

powers of x by their absolute values, then the ratio (0) is increased but is

still such that a series of positive constants can be constructed which is con-

vergent and is term by form greater than the series (7). Hence .S(x) con-

verges uniformK' in T when n = m and |a|=l and is therefore analytic in T.

But T is any closed region in the strip and hence S(x) is anal5'tic throughout

the strip.

Under the conditions of the theorem S(x) has been shown to be a solution

of the difference equation of the theorem with the required properties I and

II. The general solution having those properties will be obtained by adding

to this particular solution the general solution of the homogeneous equation

as found in the theorem of §2 which has the same projierties. This com-

pletes the theorem.

*In a?c>r(lin-e with a ihorein of fj im-i. Se^ O.)ora, vol. Z, p. 139.

Bloom higlon , Tndiiuiti

.


