On Linear Difference Equations of the First Order With Rational Coefficients.

By Thos. E. Mason.

This paper treats of the behavior of the solutions of a first order linear difference equation with rational coefficients as the variable approaehes infinity in a strip parallel to the axis of imaginaries. A unique characterization of certain solutions is obtained to within the determination of a finite number of constants. The same problem has been discussed by Mellin.* The treatment here given is much shorter and simpler. The proof has been simplified by making use of the asymptotic expansion for the gamma function and by lemma II found in $\S 1$ of this paper. The use of this lemma has also permitted the removal of some restrictions made by Mellin.

Carmichael \dagger has shown that certain solutions of the first order homogencous linear difference equation are unicuely characterized by their behavior as the variable approaches infinity in the positive or the negative direction parallel to the axis of reals.

§1. Lemmas.

Lemma I. If $\mathrm{x}=\mathrm{z}+\mathrm{iz}{ }^{1}, \mathrm{xj}=\mathrm{uj}+\mathrm{i} \mathrm{rj}_{\mathrm{j}}, \mathrm{x}^{1 \mathrm{j}}=\mathrm{u}^{1} \mathrm{i}+\mathrm{i} \mathrm{s}^{-1} \mathrm{j}$, then

$$
\begin{aligned}
& e^{O+(m-n) z+k}=e,
\end{aligned}
$$

where

and where \ddagger

$$
\mathrm{k}=\sum_{\mathrm{j}=1}^{\mathrm{n} R}\left(\mathrm{x}^{1 \mathrm{j}}\right)-\sum_{\mathrm{j}=1}^{m} \mathrm{R}\left(\mathrm{xj}^{\mathrm{j}}\right) .
$$

[^0]\dagger Transantions of the American Mathematical Society 12 (1911): 99-134.
$\ddagger \mathrm{R}(\mathrm{x})$ is uved to deno: e the real part of x .

We make use of the following form of Stirling's formula:

$$
\left.\overline{(x}-x_{1}\right)=\left(x-x_{1}\right)^{x-x_{1}-\frac{1}{2}} e^{e^{x}+x_{1}} \sqrt{2 \pi}(1+E x),
$$

where Ex approaches zero as x approaches infinity in such way that its distance from the negative axis of reals approaches infinity.

Then we have
$\left.\lim _{x \neq \infty} \mid \bar{x}-x_{1}\right) \cdot\left(x-x_{1}\right)-x+x_{1}+\frac{1}{2} e^{x-x_{1}}=\bar{c}$
Set $x=z+i z^{1}$ and $x_{1}=\mu_{1}+i 5_{1}$, where z, z^{1}, μ_{1}, v_{1} are real, and let x approach infinity, $\mathrm{A}<\mathrm{R}(\mathrm{x})<\mathrm{A}+1$; then we have

$$
\left.\lim _{z^{1} \doteq= \pm}| |\left(x-x_{1}\right) \cdot\left(z+i z^{\prime}-u_{1}-i v_{1}\right)-z-i z^{\prime}+u_{1}+i v_{1}+\frac{1}{2}{ }^{z+i z^{\prime}-u_{1}-i v_{1}} \right\rvert\,=\bar{c} .
$$

Hence

$$
\lim _{z^{1} \doteq \pm \infty \quad \left\lvert\,\left(\bar{x}-x_{1}\right) \cdot e^{\left(-z-i z^{1}+u_{1}+i v_{1}+\frac{1}{2}\right)\left(\log \sqrt[1^{\prime}\left(z-u_{1}\right)^{2}+\left(z^{1}-v_{1}\right)^{2}]{ }+i O_{1}\right)}\right.}^{a^{z-u_{1}} \mid=\bar{c},}
$$

where

$$
O_{1}=\operatorname{tanl}^{-1} \frac{z^{\prime}-v_{1}}{z-H_{1}} .
$$

Now $z-u_{1}>0$, therefore when $z^{1} \doteq+\infty, O_{1} \doteq \frac{\pi}{2}$ and when $z^{1} \doteq-\infty$, $O_{1} \doteq-\frac{\pi}{2}$. Thus in the above limit after mulitplying the factors in the exponent of e, we can replace $z^{\prime} O_{1}$ by $\frac{\pi}{2}\left|z^{1}\right|$. Then by rearrangement and simplification we can writu
$\left.\lim _{z^{1}} \doteq \pm x\left|\left(x-x_{1}\right) \cdot z^{1}-z+u_{1}+\frac{1}{2} e^{\frac{\pi}{2}}\right| z^{1} \right\rvert\, e^{z-u_{1}-O_{1} v_{1} \mid=\bar{e} .}$
Making use of limits of this form for each of the gamma functions in the expression in the lemma, we hase the lemma.

Lemma II. If $\mathrm{p}(\mathrm{x})$ is a periodic function of periond 1 which is analytic crerymhere in the finite plane and as $z^{1} \doteq \pm \infty\left(x=z+i z^{1}\right)$ satisfies the relation*
(1) $\left.\quad \frac{L}{z^{1}} \doteq \pm \alpha|p(x) 0-t \pi| z^{1} \right\rvert\,-\left(z^{1} \mid=b\right.$,

1) fimite, t positire, then $\mathrm{p}(\mathrm{x})$ may be urillen in the form
(2) $\mathrm{p}(\mathrm{x})=\underset{\mathrm{j}=-\mathrm{r}}{\stackrel{4}{-} \mathrm{Bje}^{2 \pi \mathrm{ijx}} .}$

where q is the greateat integer $<\frac{\mathrm{t}}{2}-\frac{\mathrm{Q}}{2 \pi}$ and r is the greatest integer $<\frac{\mathrm{t}}{2}+\frac{\mathrm{Q}}{2 \pi}$; and conversely, every periodic function of period 1 which can be uritten in the form (2) is analytie in the finite plane and satisfies a relation of the form (1).

Since $p(x)$ is periodic of period 1 , it takes in any period strip all the values it takes anywhere in the finite plane. The transformation

$$
w=e^{2 \pi i x}
$$

carries a single period strip of the x-plane into the whole w-plane, $z^{1} \doteq+\infty$ corresponding to $w \doteq 0$, and $z^{1} \doteq-\infty$ to $w \doteq \infty$.

We can now write

$$
\mathrm{p}(\mathrm{x})=\mathrm{f}(\mathrm{w})
$$

and since $f(w)$ can have only the simgular points zero and infinity it is expansible in a Laurent series

$$
\mathrm{f}\left(w^{\prime}\right)=\sum_{\mathrm{j}=-\infty}^{\infty} \mathrm{B}_{\mathrm{j}} \mathrm{w}^{\mathrm{j}}
$$

valid throughout the finite plane except at zero.
Using the fact that

$$
|w|=e^{-2 \pi z^{1}}
$$

we get

$$
\left|p(x) e^{-t \pi\left|z^{1}\right|-Q z^{1}}\right|=\left|f(w) w \frac{t}{2}+\frac{Q}{2 \pi}\right|
$$

when z^{1} is positive, and

$$
\left|p(x) e^{-t \pi\left|z^{1}\right|-Q z^{1}}\right|=\left|f(w) w-\left(\frac{t}{2}-\frac{Q}{2 \pi}\right)\right|
$$

when z^{1} is negative. As $z^{1} \doteq+\infty, w \doteq 0$ and

$$
\mathrm{L} \mathrm{w}_{\mathrm{w}} \doteq \mathrm{o}\left|\mathrm{f}(\mathrm{w}) \mathrm{w} \frac{\mathrm{t}}{2}+\frac{\mathrm{Q}}{2 \pi}\right|=\mathrm{b} .
$$

Hence the part of the series $f(w)$ with negative exponents can not have coefficients different from zero for j greater than the greatest integer $<\frac{\mathrm{t}}{2}+\frac{\mathrm{Q}}{2 \pi}$. As $\mathrm{z}^{1} \doteq-\infty, \mathrm{w} \doteq \infty$ and

$$
L_{w} \doteq \infty\left|f(w) w-\left(\frac{t}{2}-\frac{\mathrm{Q}}{2 \pi}\right)\right|=\mathrm{b}
$$

Hence the part of the series $f(w)$ with positive exponents can not have coefficients different from zero for j greater than the greatest integer $<\frac{t}{2}-\frac{\mathrm{Q}}{2 \pi}$.

Therefore we can write

$$
p(x)=\underset{j=-r}{\stackrel{q}{L}} B j w^{j}=\underset{j=-r}{\stackrel{q}{=} B j e^{2 \pi i j x}}
$$

where 1 is the greatest integer $<\frac{t}{2}-\frac{Q}{2 \pi}$ and r is the greatest integer $\leq \frac{t}{2}+\frac{Q}{2 \pi}$. From the definition of Q given in $\$ 2$ the values of q_{1} and r will not differ by more than 1 in the problem of this paper.

The converse is obvious.

S2. Homogeneous Equitions.

Thenrem. Eeery first order linear homogeneans differenee equation with rational rocflicients, as

$$
F(x+1)-r(x) F(x)=0,
$$

where $\mathrm{r}(\mathrm{x})$ com be wrillen in the form

$$
r(x)=: 1 \frac{\left(x-x_{1}\right) \cdot(x-x m)}{\left(x-x_{1}^{\prime}\right) \cdot\left(x-x^{\prime} n\right)} \cdot a=\text { he } i Q,-\pi<(Q<\pi=
$$

has "solution $\mathrm{F}(\mathrm{x})$ which has the folloming properties, prowided that each of the mambers $\frac{\mathrm{m}-\mathrm{n}}{4} \pm \frac{\mathrm{Q}}{2 \pi}$ is greater than zevo, or in rase $\mathrm{m}=\mathrm{n}$ that $\mathrm{Q}=0$ and

$$
k=\underset{j=1}{!!} R\left(x^{1} j\right)-\underset{j=1}{\stackrel{I n}{n}} R\left(x_{j}\right)<0 .
$$

1. $\mathrm{F}(\mathrm{x})$ is analytie in the finite part of the x -plame defined by $\mathrm{R}(\mathrm{x})>\mathrm{D}$, where D) is the greatest among the real parts of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{xm}$.
II. As x "pproaches infinity in the strip paralld to the aris of imaginaries defined by $\mathrm{A}<\mathrm{R}(\mathrm{x})<\mathrm{A}+1(\mathrm{~A}>\mathrm{D})$ the ubsolute ralue of $\mathrm{F}(\mathrm{x})$ remains finite.

$$
=\quad=
$$

Erery such function $\mathrm{F}(\mathrm{x})$ can be wrilten in the form

$$
F(x)=a^{x} \frac{\left(x-x_{1}\right) \ldots\left(x-x_{n 1}\right)}{\left(x-x_{1}^{2}\right) \ldots\left(x-x_{11}^{\prime}\right) j=\frac{!}{\underset{\sim}{n}} \operatorname{Bie}^{2 \pi i j x}},
$$

Where q_{1} is the greatest integer* $<\frac{11-n}{4}-\frac{\text { (Q }}{2 \pi}$ ant r the greatest interger*
$<\frac{m-n}{4}+\frac{Q}{2 \pi}$.
*The inerguality sign should be replaced by the equality sign in care each quantity $\frac{m-n}{4} \mp \frac{?}{2 \pi}$ is an interger and at the same time the expment if z^{\prime} in the expression in femmal, 81 , is >0, that is when $(m-a)(-a+1 / 2)-k>0$ tor all valle of x in the sarip define 1 in e mdition II wf the theorem.

The quantity a $F(x)$ evideutly satisfies the differenee equation of the theorem, where

$$
\bar{F}(x)=\frac{\left.\left.\overline{(x}-x_{1}\right) \ldots \sqrt{(x}-x_{m}\right)}{\overline{\left.\left(x-x_{1}^{1}\right) \ldots \overline{(x}-x_{11}^{1}\right)}}
$$

$a^{X-} \bar{F}(x)$ also satisfies I since in the region defined the gamma functions in the $x-$ numerator are analytic and in the denominator are different from zero. a $\mathrm{F}(\mathrm{x})$ being a particular solution of the difference equation, the general solution is

$$
F(x)=p(x) a^{x-} F(x)
$$

where $\mathrm{p}(\mathrm{x})$ is an arbitrary periodic function of period 1 .
From the limit in Lemma I, $\$ 1$, it is evident that I and II will be satisfied if, and only if, $p(x)$ is chosen so that it is analytic everywhere in the finite plane and when $x \doteq \infty, A<R(x)<A+1$, satisfies the relation

where b is finite. This can be written $\left\{\begin{array}{c}|x| \\ a \mid=h e^{-Q z^{1}}\end{array}\right)$

The use of Lemma II, §1, gives the form which $p(x)$ must take to satisfy this relation and thus completes the proof of the theorem.
$F(x)$ will in general be uniquely determined if its value is known at $q+r+1$ different points at which it is analytic. For then we should have a set of $q+r+1$ equations linear in the B 's from which we could determine the constants Bj .

The form of the periodic function $p(x)$ obtained by Mellin is
$p(x)=\sin \pi\left(x-c_{1}\right) \ldots \sin \pi\left(x-e_{p}\right)\left[\frac{\lambda_{1}}{\sin \pi\left(x-c_{1}\right)}+\ldots+\frac{A_{p}}{\sin \pi(x-c p)}\right]$, where the e's are arbitrary with the exception that no two can differ by an integer. Mellin restricted a to be a real positive quantity and in case this is clone the q and r of this paper become equal. In that case the identity of the periodic function of Mellin and the periodic function of this paper can be
shown by making the transformation $w=e^{2 \pi i x}$ and equating the coefficients of like powers of w in the two transformed expressions for $p(x)$. This gives a system of p linear equations to detemine $A_{1}, A_{2}, \ldots, A_{p}$, where the p of Mellin's paper is equal $2 q+1$.

§3. Non-homogeneots Equtions.

Tuenrem. If $r(x)$ and $s(x)$ are rational functions of the form*

$$
r(x)=a \frac{\left(x-x_{1}\right) \ldots(x-x m)}{\left(x-x^{1}{ }_{1}\right) \ldots\left(x-x^{1} n\right)}, s(x)=1, \frac{\left(x-x_{1}^{11}\right) \ldots\left(x-x^{1_{1}}\right)}{\left(x-x^{1}\right) \ldots\left(x-x_{1}{ }^{1} n\right)},
$$

whre $\mathrm{m}>\mathrm{n}$, then the series:

$$
s(x)=\underset{t=0}{\underset{\sim}{x}} \frac{x(x+t)}{r(x+t) r^{r}(x+t-1) \ldots r(x)}
$$

is always uniformly comergent for $\mid a>1$ and for $|\mathrm{a}|=1$ when $\mathrm{m}>\mathrm{n}$, and is uniformly convergent for $\mid \mathrm{a}=1, \mathrm{~m}=\mathrm{n}$, when $\mathrm{k}-(\mathrm{g}-\mathrm{n})>1$, where

$$
k=\sum_{j=1}^{n} R\left(x^{1}\right)-\sum_{j=1}^{m i} R(x j) .
$$

If the conditions for the uniform comergence of $\mathfrak{S}(x)$ are fulfilled, then every first arder linear non-homogeneons: differrnee equation with rational coefficients, as

$$
F(x+1)-:(x) F(x)=s(x)
$$

hase a solution $\mathrm{F}(\mathrm{x})$ whirh has. the following properties:

1. $\mathrm{F}(\mathrm{x})$ is annlytie in the part of the fivite x -plane defined by $\mathrm{R}(\mathrm{x})>\mathrm{D}$, where 1) is the grratest among the roal purts of $x_{1}, x_{2}, \ldots, x m$.
[I. If x is confinet to the strip parallel to the aris of imaginaries defined by $1<\mathrm{R}(\mathrm{x})<\mathrm{A}+1(\mathrm{I}>\mathrm{D})$ the absolute value of $\mathrm{F}(\mathrm{x})$ remains finite as x appromehes $=\quad=$ infinity.

E'ery such solution $\mathrm{F}(\mathrm{x})$ can be wrillen in the form

r and a_{1} beind defined as in the theorem in $\$ 2$.
In the equation

$$
F(x+1)-r(x) F(x)=s(x)
$$

make the substitution

$$
\mathbf{F}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{u}(\mathrm{x}) .
$$

where $f(x)$ is the solution of the homogeneous equation given in the theorem

[^1]in $\$ 1$. This gives
$$
f(x+1) u(x+1)-r(x) f(x) u(x)=s(x) .
$$

Since $f(x+1)-r(x) f(x)=0$ we can divide by $r(x) f(x)$ and we have

$$
u(x+1)-u(x)=\frac{s(x)}{r(x) f(x)}
$$

or

$$
u(x)=p(x)-\underset{t=0}{\underset{=}{x}} \frac{s(x+t)}{r(x+t) f(x+t)}
$$

where $p(x)$ is an arbitrary periodic function of period 1. Now $f(x+t)=r(x+t-1) f(x+t-1)=\ldots \ldots=r(x+t-1) r(x+t-2) \ldots r(x) f(x)$.
Making this substitution in the preceding equation we have

$$
u(x)=p(x)-{\underset{t}{x}=0}_{r(x+t) r(x+t-1) \ldots \ldots r(x) f(x)}^{s(x+t)} .
$$

If we choose $p(x)=0$ we have

$$
F(x)=f(x) u(x)=-\sum_{t=0}^{x} \frac{s(x+t)}{r(x+t) r(x+t-1) \ldots r(x)} .
$$

$F(x)$ is then a solution satisfying I and II provided that
$\mathrm{S}(\mathrm{x}) \equiv \mathrm{Ho}(\mathrm{x})+\mathrm{H}_{1}(\mathrm{x})+\mathrm{H}_{2}(\mathrm{x})+\ldots . \quad \mathrm{mn}(\mathrm{x})=\frac{\mathrm{s}(\mathrm{x}+\mathrm{n})}{\mathrm{r}(\mathrm{x}+\mathrm{n}) \mathrm{r}(\mathrm{x}+\mathrm{n}-1) \ldots \mathrm{r}(\mathrm{x})}$,
is analytic. $\mathcal{S}(x)$ is analytic provided that it converges uniformly in any closed region T lying in the strip defined by the relation $A<R(x)<A+1$.

In the region T in the strip under consideration the following ratio of the $(t+1)$ th term to the t-th term holds for every value of x in that region.

$$
\left|\frac{n_{t+1}}{u_{t}}\right|=\left|\frac{1}{r(x+t)} \quad \frac{s(x+t)}{s(x+t-1)}\right|
$$

$$
\begin{gather*}
=\left\{\frac{1}{a}\left\{t^{n-m}-[k-n-m R(x)] t^{n-m-1}+\ldots .\right\}\right. \tag{5}\\
\left\{1+\frac{1}{t}+\frac{l_{2}(x)}{t^{2}}+\cdots\right\}
\end{gather*}
$$

where k has the same meaning as in $\S 1$ and $l=g-n$. When $n=m(5)$ becomes

In considering the value of this ratio we shall need to examine the following eases:
(1). When $n>m$ (5) shows the ratio to be greater than 1 and therefore the series $S(x)$ diverges.
(2). When $n<m$ (5) shows that for increasing \mid the ratio approaches zero and therefore the series $S(x)$ converges.
(3). When $n=m$ we see from (6) that the convergence of the series depents on the value of as.

If al>1 the ratio ultimately approaches a quantity less than 1 and therefore s(x) converges.

If $\mid a<1$ the ratio is greater than 1 and $s(x)$ diverges.
If $|a|=1$ the series will comerge when* $k-1>1$.
In the eases where $s(x)$ converges, except where $n=m$ and $|a|=1$, the ratio u_{t+1}, u_{t} has been shown to approaeh a quantity which is less than 1 for every x in T. Hence an $I I$ and an ran be fomm such that

$$
M+M r+M r^{2}+M r^{3}+M r^{4}+\ldots \ldots .
$$

is a renvergent series of positive constant terms which is greater term by ferm than the series

```
110}+1\mp@subsup{1}{1}{}+1\mp@subsup{1}{2}{}+1\mp@subsup{1}{2}{2}+\ldots.....
```

for every x in T'. Therofore the series si(x) eonverges uniformly in ' T and is an analytie function in that region since each term is analytie in T. In case $\mathrm{n}=\mathrm{m}$ and $\mathrm{a}^{\prime}=1$ we ser from (fi) that the roefficient of 1 t does not contain x but that the coeflieients of higher powers of $1 / t \mathrm{~d}$. These eocfficients are polymomials in r . If we replace eath x by a quantity which is greater than the greatest absolute value of x in T and replace the coeflicients of the powers of x by their absolute values, then the ratio (f) is increased but is still such that a series of positive comstants can be construeted which is convergent and is term by trom greater than the series (\bar{r}). Hence $S(x)$ conrerges miformly in T when $n=m$ and $|a|=1$ and is therefore amalytie in T . But T is any closed region in the strip and hence $s(x)$ is analytie thronghout the strib.

Under the eonditions of the theorem $\mathrm{S}(\mathrm{x})$ has been shown to be a solution of the difference equation of the theorem with the required properties I and II. The general solution hating those properties will be obtained by adding to this particular solution the general solution of the homogeneons equation as found in the theorem of which bis the same properties. This completes the theorem.

[^2]Bloomington, Indiana.

[^0]: *Acta Mathematica 15 (1891): 317-384. See $\$ 81-3$ of the paner. In $\$ 3$ of an artiele in Mathematische Annalen 68 (1910): $305-337$, Mellin has defined a function by means of the linear homogeneous equation

 $$
 F(x+1)-r(x) F(x)=0,
 $$

 $$
 \text { where } \mathrm{r}(\mathrm{x} \text {) has the particular form }
 $$

 $$
 r(x)= \pm \frac{\left(x-x_{1}\right) \ldots(x-x m)}{\left(x-x^{1}\right) \ldots\left(x-x^{1} n\right)}
 $$

[^1]: *If $r(x)$ and $s(x)$ do not already have a common derominator they can exily be re luyed to expressions with a common denominator.

[^2]: *In ane ord in ex whith the rem of (ituiz. se: (1)nera, val. 3, p. 139.

