A Note on the Intersection of Osculiting Planes to the Twisted Cubic Curve.

By A. M. Kenyon.

On page 15 of his Differential Geometry Eisenhart proposes an exercise to show that on any plane there is ome and only one line through which ean be drawn two osculating planes to the twisted cubic.
$\$ 1$.
The twisted cubie

$$
\begin{aligned}
& x=\frac{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}}{d_{0}+d_{1} t+d_{2} t^{2}+d_{3} t^{3}} \\
& y=\frac{b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}}{d_{0}+d_{1} t+d_{2} t^{2}+d_{3} t^{3}} \\
& z=\frac{c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}}{d_{0}+d_{1} t+d_{2} t^{2}+d_{3} t^{3}} \\
& \left|\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2} \\
c_{0} & b_{3} \\
c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} \\
d_{3}
\end{array}\right| \pm 0 \quad \text { (since the curve is twisted) }
\end{aligned}
$$

is carried over by the nonsingular linear transformation:

$$
\begin{aligned}
& x=\frac{a_{1} x^{\prime}+a_{2} y^{\prime}+a_{3} z^{\prime}+a_{0}}{d_{1} x^{\prime}+d_{2} y^{\prime}+d_{3} z^{\prime}+d_{0}} \\
& y=\frac{b_{1} x^{\prime}+b_{2} y^{\prime}+b_{3} z^{\prime}+b_{0}}{d_{1} x^{\prime}+d_{2} y^{\prime}+d_{3} z^{\prime}+d_{01}} \\
& z=\frac{e_{1} x^{\prime}+c_{2} y^{\prime}+c_{3} z^{\prime}+c_{0}}{d_{1} x^{\prime}+d_{2} y^{\prime}+d_{3} z^{\prime}+d_{0}}
\end{aligned}
$$

into the cubie

$$
x^{\prime}=t \quad y^{\prime}=t^{2} \quad z^{\prime}=t^{3} ;
$$

planes, straight lines, and points, go over into planes, straight lines, and points, respectively, and in particular, osculating planes go into osculating planes.

The equation of the oseulating plane to the cubic

$$
\mathrm{x}=\mathrm{t} \quad \mathrm{y}=\mathrm{t}^{2} \quad \mathrm{z}=\mathrm{t}^{3}
$$

at the point whose parameter value is t, is

$$
3 t^{2} x-3 t y+z-t^{3}=0
$$

There is no line in space through which pass three such planes:

$$
\begin{aligned}
& 3 t_{1}{ }^{2} x-3 t_{1} y+z-t_{1}{ }^{3}=0 \\
& 3 t_{2}{ }^{2} x-3 t_{2} y+z-t_{2}{ }^{3}=0 \\
& 3 t_{3}{ }^{2} x-3 t_{3} y+z-t_{3}{ }^{3}=0
\end{aligned} \quad t_{1}, t_{2}, t_{3} \text {, all different, }
$$

for the determinant of the roefficients of x, y, z, is equal to

$$
9\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right)\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right) \pm 0
$$

and therefore the three planes are linearly independent.

§2.

Given a real* plane
E: $\quad a x+b y+c z+d=0 \quad a, b, c$, not all zero
and the rubic
К: $\quad x=t \quad y=t^{2} \quad z=t^{3}$
The equations of the planes which oseutate K at any two distinct points $P_{1}\left(t_{1}\right), P_{2}\left(t_{2}\right), t_{1} \neq t_{2}$, determine a line
L: $\quad \mathrm{x}=\mathrm{s} / 3+\mathrm{n} \quad \mathrm{y}=\mathrm{p} / 3+\mathrm{su} \quad \mathrm{z}=3 \mathrm{p} \mu \boldsymbol{\prime}$ wheres $=t_{1}+t_{2}, p=t_{1} t_{2}$, and u is a parameter.

That L lie on E, it is necessary and sufficient that

$$
\begin{align*}
& a s+b p+3 a=0 \tag{1}\\
& b s+3 c p+a=0
\end{align*}
$$

Write the matrix of the eoeflicients of equations (1)
II:

$$
\left|\begin{array}{ccc}
a & b & 3 \mathrm{c} \\
\mathrm{~b} & 3 \mathrm{c} & \mathrm{a}
\end{array}\right|
$$

amd set

$$
A=\left|\begin{array}{cc}
a & b \\
b & 3 c
\end{array}\right|, \quad B=\left|\begin{array}{cc}
a & 3 d \\
b & a
\end{array}\right|, \quad C=\left|\begin{array}{cc}
b & 3 d \\
3 c & a
\end{array}\right|
$$

Suppose $I \pm 0$. Equations (1) haw the unique solution:

$$
s=C A \quad p=-B A
$$

whence t_{1} and t_{2} are the roots of the cuadratie equation

$$
\begin{equation*}
A t^{2}-C t-B=0 \tag{2}
\end{equation*}
$$

Therefore if two distinet planes oscolate \mathfrak{K} and interseet on E , (inn case $\mathrm{A} \pm 0)$, it is neessary that $+\Lambda B+\left({ }^{\circ}>0\right.$, and that the parameter values of their points of oseulation be the roots of the (quadratie (2).

This condition is also sufficient, for if $\mathrm{I} \pm 0$, and if $\mathrm{I} \mathrm{A} \mathrm{B}+\mathrm{C}^{2}>0$ equation (2) determines two real mmbers t_{1} and t_{2}, and if we set $s=t_{1}+t_{2}$, $\mathrm{p}=\mathrm{t}_{1} \mathrm{t}_{2}$, these numbers satifsy ergutions (1), and the line $\mathrm{x}=\mathrm{s}=3+1$,

[^0]$y=p / 3+s u, z=3 p u$, lies on E and is the intersection of two planes which osculate k . Moreover, since under these conditions, $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{~s}$, p , are imiquely determined, there is no other line on E throngh which pass two planes which oseulate K.

If $4 \mathrm{~A} B+\mathrm{C}^{2} \overline{\overline{<}} 0$, equation (2) has one real root, or no real root, and there exists on E no line through which can be drawn two planes which osculate K.

§4.

Suppose $\mathrm{A}=0$ but B and C are not both zero. Equations (1) have no solution. There is no line on E through which pass two oseulating planes.

The results of $\$ 3$ and $\$ 4$ may be combined into a theorem:
If not all the determinants of M vanish, there is exactly one line on E, or no line on E, through which pass two osculating planes, according as the equation $A t^{2}-C^{1} t-B=O$ has or hats not two real roots.
85.

Suppose all the determinants of Al vanish. Under these conditions E itself osculates K; for, in order that the equation a $t+b t^{2}+\mathrm{e}^{3}+\mathrm{d}=0$ have three equal linear factors, it is necessary and sufficient that $\mathrm{A}=\mathrm{B}=\mathrm{C}=0$.

The plane $z=0$ oseulates K at the origin. If E osculates K , the point of osculation is $\left(-a / b, a^{2} / b^{2},-a^{3} / b^{3}\right)$ if $b \pm 0$, but $(0,0,0)$ if $b=0$.

The number of osculating planes which can be drawn to K from a point $P(x, y, z)$ is equal to the number of real roots of the equation in t

$$
\begin{equation*}
t^{3}-3 x t^{2}+3 y t-z=0 \tag{3}
\end{equation*}
$$

Write down the matrix*
M' :
$\left.\begin{array}{rr}-\mathrm{x} & y^{\prime} \\ y & -z\end{array} \right\rvert\,$
and set

$$
A^{\prime}=\left|\begin{array}{rrr}
1 & -x^{\prime} \\
-x & y^{\prime}
\end{array}, \quad B^{\prime}=\begin{array}{rr}
1 & y \\
-x-z
\end{array}\right|, \quad C^{\prime}=\left\lvert\, \begin{array}{rr}
x & y^{\prime} \\
y-z
\end{array}\right.
$$

then the discriminant of (3) is

$$
\mathrm{D}=3\left|\begin{array}{cc}
2 \mathrm{~A}^{\prime} & \mathrm{B}^{\prime} \\
\mathrm{B}^{\prime} & 2 \mathrm{C}^{\prime}
\end{array}\right|
$$

The points of the plane E may be elassified as follows:
(1) Suppose at a point P of $\mathrm{E}, \mathrm{D}>0$.

$$
\begin{array}{c|ccc}
* \text { Reduced from } & -3 x & -6 x & 3 y \\
-3 y & -3 z
\end{array}
$$

Equation (3) has three real roots, t_{1}, t_{2}, t_{3}; one of these t_{1} say, determines E itself; the other two determine a pair of oscultating planes:

$$
\begin{aligned}
& 3 t_{2}{ }^{2} x-3 t_{2} y+z-t_{2}{ }^{3}=0 \\
& 3 t_{3}{ }^{2} x-3 t_{3} y+z-t^{3}=0
\end{aligned}
$$

distinct from E and from each other; their intersection does not lie on E, else would the three ossultaing planes be linearly dependent. Therefore, these two planes cut out from E a pair of lines intersecting in P , throngh each of which passes a pair of osculating planes. E itself and one other.
(2) Suppose at a point P of $\mathrm{E}, \mathrm{D}=0$ but $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$, are not all zero.

E(plation (3) has on! y two *roots, both real; one of these determines E and the other determines an osculating plane distinct from E which interseets E in a line throngh P .
(3) Suppose at a point P of $\mathrm{E}, \mathrm{S}^{\prime}=\mathrm{B}^{\prime}=\mathrm{C}^{\prime}=0$; then is $\mathrm{D}=0$.

There is in fact only one point on E at whith $\mathrm{A}^{\prime}=\mathrm{B}^{\prime}=\mathrm{C}^{\prime}=0$, for from these equations follow $x=x, y=x^{2}, z=x^{3}$; therefore P ' is on K and is therefore the point of osculation of E and K . Under these conditions equation (3) has only one \dagger root and that determines E .
(t) Suppose at a point P of $\mathrm{E}, \mathrm{D}<0$.

Equation (3) has only one real root and that determines E.
These results may be combined into a theorem:
If all the determinamts of M ramish, E itself asculates K. Therough cvery point of E, wh which $I>0$ there may be drawn "tnique pair of lines on E, through each of which passe two osculating planes; through every point of E, at which $D=0$ (except the point wher E bseulates K) there may be drauen a anique line on E through which pass turo dsculating planes; through every other point of E (ineluding the point of osculation) there cexists no line on E' through which pass two osculating planes.

Examples:

1. E:

$$
\begin{aligned}
& 3 x+3 y-2 z-5=0 \\
& \left\lvert\, \begin{array}{rr}
3 & -15 \\
3 & -6
\end{array} \quad 3\right., \quad A=-27, \quad B=54, \quad C=-81 . \\
& t^{2}-3 t+\underline{2}=0 \quad t_{1}=1, t_{z}=2, s=3, p=2 . \\
& \mathrm{x}=1+\mathrm{n}, \mathrm{y}=2,3+3 \mathrm{u}, \quad z=6 \mathrm{u} .
\end{aligned}
$$

Through L pass the two osculating planes:
$3 x-3 y+z-1=0, \quad 12 x-6 y+z-\delta=0$.

[^1]2. $\mathrm{E}: \quad \mathrm{x}+3 \mathrm{y}+\mathrm{z}=0$.

M: $\left|\begin{array}{lll}1 & 3 & 0 \\ 3 & 3 & 1\end{array}\right| \quad \mathrm{A}=-6, \quad \mathrm{~B}=1, \quad \mathrm{C}=3$.

$$
\begin{equation*}
6 t^{2}+3 t+1=0 . \quad \text { No real root: no line. } \tag{2}
\end{equation*}
$$

3. $\mathrm{E}: \quad \mathrm{x}+2 \mathrm{y}+\mathrm{z}=0$.
$\mathrm{M}: \quad\left|\begin{array}{lll}1 & 2 & 0 \\ 2 & 3 & 1\end{array}\right| \quad A=-1, \quad \mathrm{~B}=1, \quad \mathrm{C}=2$.

$$
\begin{equation*}
t^{2}+2 t+1=0 \tag{2}
\end{equation*}
$$

Only one root: no line
4. E: $3 x+3 y+z-1=0$
11. $\quad\left|\begin{array}{llr}3 & 3 & -3 \\ 3 & 3 & 3\end{array}\right|, \quad \mathrm{A}=0, \quad \mathrm{~B}=18, \quad \mathrm{C}=18$
$\mathrm{t}+1=0$
Only one root: no line.
5. E: $3 x-3 y+z-1=0$
$\mathrm{M}: \quad\left|\begin{array}{lrr}3 & -3 & -3 \\ -3 & 3 & 3\end{array}\right| \quad \mathrm{A}=\mathrm{B}=\mathrm{C}=0$.
E osculates K at $(1,1,1)$ i. e. where $\mathrm{t}=3 / 3=1$, see $\S 5$
a) Consider the point $\mathrm{P}(-2,1,10)$ on E
$\mathrm{MI}^{\prime}: \quad\left|\begin{array}{llr}1 & 2 & 1 \\ 2 & 1 & -10\end{array}\right| \mathrm{A}^{\prime}=-3, \mathrm{~B}^{\prime}=-12, \mathrm{C}^{\prime}=-22$.
$\mathrm{D}=350$; two lines on E through P ;
(3)

$$
t^{3}+6 t^{2}+3 t-10=0 \quad t_{1}=1, t_{2}=-2, t_{3}=-5
$$

Lines through P :
L_{1} :

$$
\mathrm{x}=-2-\mathrm{u}, \quad \mathrm{y}=1+\mathrm{u}, \quad \mathrm{z}=10+6 \mathrm{u}
$$

through which pass osculating planes

$$
3 x-3 y+z-1=0, \quad 12 x+6 y+z+8=0
$$

$L_{2}: \quad x=-2-u, \quad y=1+4 u, \quad z=10+15 u$.
through which pass osculating planes

$$
3 x-3 y+z-1=0, \quad 75 x+15 y+z+125=0
$$

b) Consider the point $\mathrm{P}(2,3,4)$ on E
$\mathrm{M}^{\prime}: \quad\left|\begin{array}{rrr}1 & -2 & 3 \\ -2 & 3 & -4\end{array}\right|, \mathrm{A}^{\prime}=-1, \quad \mathrm{~B}^{\prime}=2, \quad \mathrm{C}^{\prime}=-1, \mathrm{D}=0$.

$$
\begin{equation*}
t^{3}-6 t^{2}+9 t-4=0, \quad t_{1}=1, \quad t_{2}=4 \tag{3}
\end{equation*}
$$

Line through P :
L:

$$
\mathrm{x}=2+\mathrm{u}, \quad \mathrm{y}=3+5 \mathrm{u}, \quad \mathrm{z}=4+12 \mathrm{u},
$$

13-33213
through whieh pass osculating planes

$$
3 x-3 y+z=1, \quad 48 x-12 y+z=64
$$

e) Consider the point $(0,0,1)$ on E :
$M^{\prime}: \quad\left|\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right| \quad A^{\prime}=0, \quad B^{\prime}=-1 . \quad C^{\prime}=0, D=-3 . \quad$ Noline.
In case E is an osculating plane different from $\mathrm{z}=0$, and P is on $\mathrm{E}, \mathrm{t}=$-a/b is a root of equation (3), which can consequently be depressed to the quadratic

$$
\begin{equation*}
(b t)^{2}-(a+3 b x) b t+a(a+3 b x)+3 b^{2} y=0 \tag{4}
\end{equation*}
$$

and the number of osculating planes through P which are distinct from E is equal to the number of real roots of this equation which are different from-a, b.
d) Consider again the point $\mathrm{P}(-2,1,10)$ on $3 \mathrm{x}-3 \mathrm{y}+\mathrm{z}=1$

$$
\begin{equation*}
t^{2}+7 t+10=0 \quad t_{1}=-2 \quad t_{2}=-.5 \tag{4}
\end{equation*}
$$

both different from 1: therefore two lines as before under a).
e) Consider the point $\mathrm{P}(-1,0,4)$

$$
\begin{equation*}
\mathrm{t}^{2}+4 \mathrm{t}+4=0 \quad \mathrm{t}=-2 \tag{4}
\end{equation*}
$$

one root different from 1 ; therefore one line
L: $x=-1-n, \quad y=n, \quad z=4+6 u$
through which pass oseulating planes

$$
3 x-3 y+z-1=0, \quad \text { and } \quad 12 x+6 y+z+s=0
$$

§7.

The case where E is an osemlating plame may also be treated geometrically by making use of certain considerations given in a later chapter of Eisenhart's book. The equation of the envelope F. of the osculating planes to K is obtained by equating to zero the discriminant I) of equation (3):

$$
\begin{equation*}
3 x^{2} y^{2}+6 x y^{z}-4 x^{3} z-z^{2}-4 y^{3}=0 \tag{.5}
\end{equation*}
$$

since $x=t, y=t^{2}, z=t^{3}$, satisfies (j) for all values of t, K it welf lies on F; in fact, K is the edge of regression of F.

A given osculating plane E not ouly touches F , but in general cuts ont from Faplane curve H , which passes through the point where E osculates K. Every osculating plane different from E , cuts E in a line tangent to H ; conversely through every straight line on E tangent to H pasies an osculating plane which is distinct from E.* The curve H divides E into two or more regions thronghout each of which D is always positive or ahwas negative and therefore serves to classify the points of E into those through which can be drawn two lines, or one line, or no line respeetively, which is the intersection of two osculating planes,

[^2]On the osculating plane $z=0$ the curve H consists of the x-axis and the parabola $3 x^{2}=4 y$. It divides the plane into four regions: R_{1}, the top half plane; R_{2}, that part of the lower left quarter plane which is "outside" the parabola; R_{3}, that part of the lower right quarter plane which is "ouside" the parabola; R_{4}, that part of the lower half plane which is "inside" the parabola. Throughout the first three regions, $\mathrm{D}>0$, while in the fourth region, $\mathrm{D}<0$; everywhere on H itself of course $\mathrm{D}=0$.

Any other osculating plane $3 t^{2} x-3 t y+z-t^{3}=0, t \pm 0$, cuts the plane $z=0$ in the line $3 t x-3 y-t^{2}=0$. This equation represents the one parameter family of lines which envelope the parabola $3 x^{2}=4 y$. The parameter t, is in fact the slope of these tangents.

From any point in R_{123} two tangents can be drawn to the parabola and through each of these pass two osculating planes; from no point in R_{4} ean a tangent be drawn to the parabola and through this region of $z=0$ there passes no line which is the intersection of two osculating planes. Through any point on the parabola itself one and only one tangent can be drawn and (exeepting the tangent at the origin) this is the intersection of two oseulating planes. Through any point (except the origin) on the x-axis, which is a part of H, two tangents can be drawn to the parabola but one of these is in all eases the x-axis itself, through which passes no osculating plane distinct from $z=0$. Therefore through any point (except the origin) on the x-axis there passes one line which is the intersection of two osculating planes.

Examples on the osculating plane $z=0$.
a) Consider the point ($0,-3,0$) in R_{1}

$$
3 \mathrm{t} x-3 y-\mathrm{t}^{2}=0 \text { gives } \mathrm{t}_{1}=3 \quad \mathrm{t}_{2}=-3
$$

L_{1} : $3 x-y-3=0$ through which pass osculating planes $27 x-9 y+z=27$ and $z=0$
L $\mathrm{L}_{2}: \quad 3 \mathrm{x}+\mathrm{y}+3=0$ through which pass $27 x+9 y+z+27=0$ and $z=0$
b) Consider the point ($12,-3 / 2,0$) in R_{1} $3 \mathrm{t} x-3 \mathrm{y}-\mathrm{t}^{2}=0$ gives $\mathrm{t}_{1}=3 \quad \mathrm{t}_{2}=-3 / 2$
L_{1} : same as L_{1} under a)
$\mathrm{L}_{22}: \quad 6 x+4 y+3=0$ through which pass $54 x+18 y+4 z+2 \overline{7}=0$ and $z=0$
c) Consider the point $(2,3,0)$ on the parabola $3 \mathrm{t} x-3 \mathrm{y}-\mathrm{t}^{2}=0 \quad$ gives $\quad \mathrm{t}=3$
L: same as L_{1} under a)
d) Consider the point $(1,0,0)$ on the x-axis
$3 \mathrm{t} x-3 \mathrm{y}-\mathrm{t}^{2}=0$ gives $\mathrm{t}_{1}=0 \quad \mathrm{t}_{2}=3$
$t=0$ determines the x-axis; $t=3$ determines the line L: same as L_{1} under a).

These examples are illustrated by the accompanying figure.

Purdue University;
November 29, 1912.
$=2$
(

[^0]: *This probhem is treat dithoaghout as a problem in fiemerry, not one in Alsebri.
 these equations hold even if one of t_{1}, t_{2}, is zero.

[^1]: *That is, two equal linear factors distincl from the third linear factor.
 \dagger That is, three equal linear factors.

[^2]: * [nless perchance this line is a part of H, as is the case with the x-axis on the plane $z=0$.

