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A Family of Warped Surfaces.

O. A. Waldo.

Derivation of the general equation of all warped surfaces having two

distinct rectilinear directrices and its application to a few special cases.

Fig. 1.

Ijet the surface be defined by the three directrices

X =: O, z = p,

y = O, z = q,

f (x'y') = 0, z = 0.

The curve f (x'y') = O lies in the plane z r= O, the A' and Faxes are

parallel to the rectilinear directrices; the Z axis includes the common per-

p3ndicular to the rectilinear directrices, unless otherwise specified.

In the diagram Fig. 1, let X' X^^ be one straight line directrix at the

distance q above the plane z = o, Y' Y'^ the other at p above z= o. Their

horizontal projections will be the X and Y axes of reference.
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Let (x, y, z) be any point P on the warped surface, and E' E" E"^

the rectilinear element containing it.

Let O M = x' , O N = X , O R = q, O Q = p.

Then by similarities and projections the following equations exist

:

x^ _ E^^^E^i _ B'''2 E^2 _ p , _ P X

"x ~ E'"i Pi ~ E'"2 P2 ~ p—z ' ^ ~ p—

z

Similarly, v' = ^^q—

z

Substituting these values ot x' y' in f (x' y') = o, there results the cor-

responding functional equation,

fr^^,-^l = o,
Ip—z q—zj

which is the equatiou in Cartesian co-ordinates X, Y axes general, Z

axis perpendicular to X and Y of the warped surfaces as defined above

and includes crery warped surface -nnth two distinct rectilinear directrices.

For its application it requires that a section of the surface should be

known parallel to the right-line directrices and not including either of

them. This general surface is referred directly to the orthogonal pro-

jections of two warped Imes in space upon a plane parallel to both,

and to their common perpendicular. The angle at which the lines

intersect is inqilicitly contained in the eqiuition of the surface. The

form of the equation of the surface does not change, therefore, when

the surface itself is deformed by changing the angle in space of the

right line directrices, provided the form of tlie equation of the plane

curve directrix remains unchanged.

It is also at once evident that the method derives immediately the

Cartesian equation of the warped surface determined by the fact that

an element cuts a curved directrix, a linear directrix and is parallel to a

given plane. This is equivalent to saying that one of our parameters

p. q. remains finite while the other becomes indefinitely grear.

For simplicity suppose the three axes always at right angles to each

other unless otlierwise specified.

The Hyperbolic Paraboloid.

(a) Let f (x^ y') = x' — y^ = O.

Thenf C-P^.A^l =^^-^^ = 0.
\ p— z q— z I p—z q—

z

Let p ^ 1, q ^ — 1

Then x + xz — y -J- yz = o.
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Rotate the xy axes through - 4, then the zx axes in the same way, and

there results the well known equation,

x- — z- = 2y.

(b) Let f (x^ yO = x' y' — c = o.

Thenff^^,^^! =-P^ ^l^_c=^^ J__c=:o.
Lp—z p— z J p— z q—

z

p—

z

z

q
Let p = 1 and q become indefinitely great.

Then xy = c (1—z).

Rotate the zy axes through tt 4, let c = 1 and

1 — z = Z,

Then x^ — y- = 2Z.

Compare this operation and result with tlie next.

The Hyperboloid of One Sheet.

Let f (x^ y') ^ x^ y' — c ^ o

p X q y
as above —— -^^^l^ := c.

p—z q—

z

let p = 1, q = — 1

Then xy = c (1 — z^).

Rotate xy axes througli tt 4, let c ^ 1/2,

Then x^ — y^ -|- z^ = 1.

A Cubic Surface with Parabolic Sections.

Let f (x' y^) = y'^ — x' ^ o.

rn,, j^rpx qyi q^y^ px
Then f -^^-

,
-^^ = 7^^-^ — -- - = o.

Ip—z q—zj (q—z)2 p—

z

a. Let p ^ 1 and q = — 1. Then

y* (1—z) = X (1 + z)2, one of the cubical warped surfaces.

b. Let p = 1, q =: 00, then y- (1 — z) ^ x.

c. Let q ^ 1, p = X, then y^ = x (1 — z)^.

Biquadratic Surface with Hyperbolic Sections.

Let f (x' y') = x'2 — y'2 — c = o

mi J-
f v^ qy 1 p^x2 q^y^

Then f |

-^—
,
-^^

|
= -^ -„ —

, \. — c= o
[p—z q—ZJ (p— z)2 (q_z)2

a. Let p^l, qt= — 1, c = l

Then x2 (1 -| zf — j^ (I — z)2 = (1 — z2)2
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b. Let p=^l, q^ oo, c = l

Then x^ _ y2 (1 _ z)2 = (1 — z)2

c. Let p= cc, q^l, c = l

Then x2 (1 — z)2 — y2 = (1 — z)2

Biquadratic Surface with Elliptical Sections.

Let f (x' yO = x^2 + y'2 _ c = o

Then f (-P^.-^^l =,-Pi^,+ ^'y' ---
[p-z' q-z

J
(p-z)2 ' (q-z)2

a. Let p = 1, q = — 1, c — 1

Then X^ (1 f X)2 -f
yZ (l _ z)2 = (1 — z2)2

Here the volume between rectilinear directrices is exactly that of a

sphere of radius one.

b. Let p = aq, c = 1

Then ^ 1 ^^ = 1

.

L aq Jaq J I q J

2 aq
Circular sections are at z ^ o and z

1+a-
2 ao

The planes z ^ o, z =: q, z = -——
, z = aq divide every transversal

i —p a

harmonically. In particular every element is divided harmonically by the

circular sections and the rectilinear directrices.

c. Combining the last two surfaces and letting p = aq,

X-
,

y2

I aqJ L q J

= C

Solve for sections parallel to tlie xy plane and of the same eccen-

tricity :

( 1
z "1 Ti z

^ 1 , •ml ±1 which gives
I aq J L q J

z = —^— and z rz= — ; for similar conic sections.m — a m -)- a

It is then easily seen that the four planes,

z = q,

aq (m — 1)
z = —2:

m — a

z = aq,

_ aq (m + 1)

m 4- a *

divide any transversal liarmonically.
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d. In the most general form with elliptic sections:

Let p ^ 1, q = cc, c =: 1.

Then x=* -f (1 — z)- j^ = {I — z)2, the equation of Wallis's Coneo-

Ctmeus, or the ship carpenter's wedge.

e. Assume case a. Tlie central section at z = o is a circle. Deform

the surface by rotating one directrix about the Z axis any angle less than

7r/2. The section z = o will now be an ellipse referred to its equi conju-

gate diameters. The form of the equation of this section will not change;

also the form of the equation of the deformed surface will be invariant.

Order of the Resulting Warped Surfaces.

Let fn (x y) represent a homogenous algebraic expression involving x

and y and of the nth degree.

In the fundamental demonstration,

1. Let f (x' yO = f
,
(X y) — c = o.

If X and y are both present, the corresponding warped surface is of

the 2d order.

If X or y is absent, the resulting surface is a plane.

2. Let f (x' yO = f2 (x y) + fi (x y ) — c = o.

x^ and y* both present, 4th order.

x^ or y2 absent, other terms present, 3d order.

x^ and y* both absent, xy present, x and y present or one or both

absent, 2d order.

3. Let f (x' yO = fs (x y) + f2 (x y) + fi (x y) — c = o.

x^ and y3 both present, 6th order.

x3 or y'^ absent, other terms present, 5tji order.

x^ and terms involving x^ absent ; or, y'' and terms involving y^ ab-

sent, 4tli order,

x^ and y^ both absent, other terms present, 4th order.

x^, y'\ and xy^ and terms involving y^ absent, other terms present

;

or, x', y3, and x^y and terms involving x^ absent, other terms

present, 3d order.

To deduce the general law of order of the resulting scrolls, construct

Fig. 2. Within the squares are present all the powers and combinations

that can occur in a complete equation in x, y, of the 5th degree. The

numbers at the intersections of the lines show the order of the resulting

scroll provided at least two terms remain in our original f (x', y') =o, one
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of whicli lies in a square two sides of wliicli converge in the angle in ques-

tion, or one of the two terms lies in a square bounded above and to the

right by one of the lines converging at the angle, the other in a square

Fig. 2.

bounded above and to the left by the other line making the angle. Thus

below one of the points marked 5 is found the term x''y2. This term joined

with any or all others lying between the lines converging at that particu-

lar 5, will yield a scroll of the otii order.

So also we will have a scroll of the 5th order if we select x^y^ on one

side and x^ on the other side of the space bounded by the lines converging

at the same point 5.

At the middle point of the whole of Fig. 2 is a vertex marked 4. The

following groups can be arranged for the equation of the curvilinear

directrix, but in every case the resulting scroll will be of the ith order.

1. x*y2 and c present, xy present or absent,

2. x^y- and c present, and other terms present besides xy,



251

3. x-y and xy^ present, other terms present or absent,

4. x^y and y^ present, other terms present or absent (or xy^ and x^),

5. x'' and y^ present, other terms of lower degree present or absent.

1 and 2 are built from 4th degree terms and the resulting equation

is only the 4th.

3, has two 3d degree terms present, scroll 4th.

4, one term 3d degree, other 2d, scroll 4th.

5, built from second degree terms, scroll 4th.

x-Jj,

J^

."^ xj ^
XJ A3

"3

'Li*

Fig. 3.

Fig. 3, shows at once the order of the resulting scroll when the equa-

tion of the curvilinear directrix is marked by the presence or absence of

certain specified terms.
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Double Generation.

The law of double generation is simply stated. Two straight lines are

chosen parallel to the plane of the curvilinear directrix, the three giving

rise to a scroll of a certain equation. Suppose two other straight lines can

now be found parallel to the plane of the curvilinear directrix and inter-

secting the first two rectilinear directrices. Suppose the use of the second

pair of lines gives exactly the same equation as the first two, then the sur-
px

face is one of double generation. For example, x' y'= c. Substitute

qy
for x' making p = 1 and for y' making q = — 1. There results

xy
^= c; now make p = — 1 and q = + 1. The same equa-

(1 -|-z)(l— z)

tion results. In fact these are the two generations of the hyperboloid of

one sheet.

It then becomes at once apparent tliat all scrolls are doubly generated

whose curvilinear directrix has for its equation a function of the product

term (xy), the plane of the curvilinear directrix being parallel to tlie recti-

linear directrices. Thus the first of the five -1th scrolls order mentioned

above, viz. : tlie one having x-y- and c, and perhaps x y terms in the

equation of the curvilinear directrix is a scoU of double generation.

It is not at once evident that the property discussed above is co-

extensive with all the doubly generated warped surfaces in the family

under discussion. Such surfaces may also depend upon other properties

not yet discovered.

General Observations.

It is evident that the validity of the demonstration does not require

the axis of Z to be the common perpendicular between the two recti-

linear directrices. If the Z axis connects the two directrices in ques-

tion and passes through the middle point of their common perpendicu-

lar, it follows at once that the demousiratiou proceeds as Itefore by

parallel instead of orthogonal projection.

If we conceive the three axes of reference, under the restrictions just

given, to be ol)lique to each other, we find tlie resulting e(iuations are still

in their simplest forms. In the surfaces of the second order the axes

would then be conjugate axes. In surfaces of higher order the axes

of reference would play the part of conjugate axes.
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It will frequently liapjieu that the equation of a scroll will be sought

whose three directrices are given as above, viz., two rectilinear and one

plane curvilinear directrix, but the latter in some plane not parallel to

the two former lines.

In this case additional means should be given for writing the equa-

tion of the surface undex the new conditions. It will then be easy to

find a section parallel to the two right-line directrices and the problem

then is solved by the process discussed in this paper.

A modification of the method here discussed finds the equation of a

scroll given by two rectilinear directrices and a plane section of the

surface, the section being oblique to a plane parallel to the two given

straight lines




