Some Properties of Binomial Coefficients.

A. M. KENYON.

§1.

The binominal coefficients of the expansion

$$(x+y)^{k} = {\binom{k}{0}} x^{k} + {\binom{k}{1}} x^{k-1} y + {\binom{k}{2}} x^{k-2} y^{2} + \dots + {\binom{k}{k}} y^{k}$$

were known to possess a simple recursion formula

(1) $\binom{k}{n} + \binom{k}{n+1} = \binom{k+1}{n+1}$ k, n = 0, 1, 2, 3 ...

by means of which Pascal's Triangle*

	n = 0	n = 1	n = 2	<i>n</i> = 3	n = 4	etc.
k = 0	1					
k = 1	1	1				
k = 2	1	2	1			
k = 3	1	3	3	1		
k = 4	1	4	6	-1	1	
etc.		_				_

could be built up, before Newton showed that they are functions of k and n:

(2)
$$\binom{k}{n} = \frac{k(k-1)\cdots(k-n+1)}{n!}, n = 1, 2, 3, \dots$$

 $\binom{k}{n} = 1$ $n = 0$ $k = 0, 1, 2 \dots$

A great number of relations involving binomial coefficients have been discovered**; some of the most useful of these are

(3)
$$n\binom{k}{n} = k\binom{k-1}{n-1}$$
; $\binom{k}{n} = \frac{k}{k-n}\binom{k-1}{n}$; $\binom{k}{n} = 0$ if $n > k$.

*See Chrystal : Algebra I, p. 81.

**See Chrystal: Algebra II, Chaps. XXIII, XXVII. Hagen: Synopsis der hoeheren Mathematik, p. 64; Pascal: Repertorium der hocheren Mathematik I, Kap. II, Sec. 1.

28 - 4966

From (1) and (3) it follows that $\binom{k}{n}$ satisfies the linear difference equation (n+1) f(n+1) + (n-k) f(n) = 0

It is well known that the sum of the coefficients $(x + y)^k$ is 2^k and that the sum of the odd numbered coefficients is equal to the sum of the even numbered ones; the following are perhaps not so well known:

(4) If, beginning with the second, the coefficients of $(x - y)^k$ be multiplied by c^n , $(2c)^n$, $(3c)^n$, ..., $(kc)^n$ respectively; c being arbitrarily chosen different from zero, the sum of the products will vanish for $n = 1, 2, 3, \ldots, k - 1$ but not for $n \ge k$, e.g.

k	=	8	-8,	28,	-56,	70,	-56,	28,	-8,	1
с		2	2^n ,	4^n ,	6^n ,	8^n ,	10^{n} ,	12^{n} ,	14^{n} ,	16^n

The sum of the products vanishes for $n = 1, 2 \dots 7$; but not for n > 7; for n = 8 it is 10,321,920.

(5) If the first k coefficients of $(x - y)^{k+1}$ be multiplied term by term, with k^n , $(k - 1)^n$, $(k - 2)^n$, ..., 1^n , (n, k = 1, 2, 3, ...) the sum of the products will be

 $(-1)^{k+n}$ if n = k + 1;

in particular

$$k^{k} \binom{k+1}{0} - (k-1)^{k} \binom{k+1}{1} + (k-2)^{k} \binom{k+2}{2} - \dots + (-1)^{k-1} \binom{k+1}{k-1} = 1$$

e. g. take k = 5.

The sum of the products is +1, -1, +1, -1, +1, 719, for n = 1, 2, 3, 4, 5, 6, respectively.

Both (4) and (5) are special cases of

(6) If the coefficients of $(x - y)^k$, (k = 1, 2, 3, ...) be multiplied term by term by the *n*th powers (n = 0, 1, 2, ...) of the terms of any arithmetic progression with common difference $d \neq 0$, the sum of the products will vanish if n < k; will be $(-d)^k (k!)$ if n = k; and if n = k + 1 will be the product of this last result and the sum of the terms of the arithmetic progression.

. g. take k = 6, d = -1, a.p., 4, 3, 2, etc.

1, -6, 15, -20, 15, -6, 1

$$4^n$$
, 3^n , 2^n , 1^n , 0^n , $(-1)^n$ $(-2)^n$

The sum of the products vanishes for n = 1, 2, 3, 4, 5, but not for n > 5; for n = 6, it is $(-1)^{6} (6!) = 720$; and for n = 7, it is 720(4 + 3 + 2 + 1 + 0 - 1 - 2) = 5040.

The third conclusion of (6) shows that if

(I) $a + (a + d) + (a + 2d) + \dots + (a + kd)$ and

(II)
$$\begin{pmatrix} k \\ 0 \end{pmatrix} a^k - \begin{pmatrix} k \\ 1 \end{pmatrix} (a+d)^k + \begin{pmatrix} k \\ 2 \end{pmatrix} (a+2d)^k - \dots + (-1)^k \begin{pmatrix} k \\ k \end{pmatrix} (a+kd)^k$$

be multiplied term by term and the (k + 1) products be added, the result will be the same as though (II) be multiplied through by the terms of (I) in succession and the $(k + 1)^2$ products be added; e.g. take k = 4, a = 1, d = 2

(I)			1,	3	,	5	, 7	7,	9	
(II)		• 1	14 ,	-4'34	,	$6^{\circ}5^{4}$, –1	7^4 ,	1^{94}	
			1 —	972	+	18750	- 67	7228 + 3	59049	= 9600
		$1^{'}1^{4}$	-4 3	34	$6^{+}5^{4}$	—4	74	1	94	
	1	1	— 324		3750	— 9	604	65	61	384
	3	3	- 972	2	11250	-28	812	196	83	1152
	5	$\tilde{5}$	-1620)	18750	48	020	328	05	1926
	7	7	-2268	,	26250	67	228 *	459	27	2688
	9	9	-2916	;	33750	86	436	590	49	3456
-		25) +	93750	24	0100	+1640	25	9600

*§*2.

The properties noted above, and many others, can be made to depend upon those of the sum

 $k, n = 0, 1, 2, 3, \ldots$

(1)
$$S(k, n) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} i^{n}$$

It is readily shown that (2) S(k, n) vanishes for k > n

(3)
$$S(k, n) = -k \sum_{i=k}^{n} {n-1 \choose i-1} S(k-1, i-1) \\ = -\sum_{i=k}^{n} {n \choose i-1} S(k-1, i-1)$$

whence S(k, n) is divisible by k! and in fact $S(n, n) = (-1)^n n!$ Also, since S(1, n) < 0, it follows that for fixed k, S(k, n) preserves a constant sign (or vanishes) for all values of n: and this sign is the same as that of $(-1)^k$.

These numbers possess a recursion formula

(4)
$$S(k, n) = k[S(k, n-1) - S(k-1, n-1)]$$

 $n, k = 0, 1, 2, ...$

by means of which may be constructed,

	k = 0 $k = 1$	k = 2	k=3	k=4	k=5	k = 6	k=7	k=8
n = 0 $n = 1$ $n = 2$ $n = 3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2}{6}$	6					
n = 3 $n = 4$ $n = 5$ $n = 6$	$\begin{array}{ccc} 0 & -1 \\ 0 & -1 \\ 0 & -1 \\ 0 & -1 \end{array}$	14 30 62	-36 -150 -540	$24 \\ 240 \\ 1560$	-120 -1800	720		
n = 0 $n = 7$ $n = 8$	$ \begin{array}{c c} 0 & -1 \\ 0 & -1 \\ 0 & -1 \end{array} $	$\frac{126}{254}$	-1806 -5796	8400 40824	-16800 -126000	$ 15120 \\ 191520 $	-5040 141120	40320

ł	TABLE	\mathbf{OF}	VALUES	\mathbf{OF}	S	(k,	n)
---	-------	---------------	--------	---------------	---	-----	---	---

Subtract any entry from the one on its right, multiply by the value of k above the latter.

(5)
$$\sum_{k=0}^{n} S(k, n) = (-1)^{n}$$

(6)
$$\sum_{k=1}^{n} \frac{S(k,n)}{k} = 0 \qquad n = 2, 3, 4, \dots$$

 $\sum_{k=2}^{n} S(k, n) = 1 + \cos n\pi$

(7)
$$\sum_{i=k}^{n} \binom{n+1}{i} S(k,i) = (k+1) \sum_{i=k}^{n} \binom{n}{i} S(k,i)$$

(8)
$$\sum_{i=k}^{n} {n \choose i} S(k, i) = S(k, n) - S(k+1, n)$$

Setting n = k + 1 in (7) we obtain

(9)
$$S(k, k+1) = \binom{k+1}{2} S(k, k)$$

and similarly we can express S(k, k + 2), S(k, k + 3), etc. in terms of S(k, k). From (4)

$$S(k, n) = S(k + 1, n) - \frac{1}{k+1}S(k + 1, n + 1)$$

 $k, n = 0, 1, 2, 3, ...$

By applying this m times, we obtain

(10)
$$S(k, n) = \sum_{i=0}^{m} (-1)^{i} H_{i} \quad S(k+m, n+i)$$

k, n = 0, 1, 2,; m = 1, 2, 3,

where H_i is the sum of the products of the fractions 1/(k+1), 1/(k+2), 1/(k+3), ..., 1/(k+m), taken *i* at a time; $H_0 = 1$.

The proof of (6) §1 is as follows. If the first term of the arithmetic progression is zero,

$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} (di)^{n} = d^{n} S(k, n)$$

and this vanishes if n < k; is $(-d)^k(k!)$ if n = k; and is

$$(-d)^k (k!)[d + 2d + 3d + \dots + kd]$$
 if $n = k + 1$.

If the first term of the arithmetic progression is $a \neq 0$,

$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} (a+di)^{n} = d^{n} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (x+i)^{n}$$

where $x = a/d \neq 0$.

If we use the notation

$$f(n, x, k) \equiv \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (x+i)^{n}$$

expand $(x + i)^n$ by the binomial formula and reverse the order of summation, we obtain

(11)
$$f(n, x, k) = \sum_{i=0}^{n} {n \choose i} x^{n-i} S(k, i)$$

Therefore

 $f(n, x, k,) = 0 \quad \text{when } n < k \text{, since all the summands vanish}$ $= S(k, k) \quad \text{when } n = k$ $= \sum_{i=k}^{n} {n \choose i} x^{n-i} S(k, i) \quad \text{when } n > k$

In particular, when n = k + 1

 $f(k+1, x, k) = (x + \frac{k}{2}) (k+1)S(k, k) \text{ and on putting a/d for } x,$ $d^{k+1}f(k+1, x, k) = d^k S(k, k)[a + (a+d) + (a+2d) + \dots + (a+kd)]$ and from these follow the three conclusions* of (6) §1.

*Chrystal: Algebra II, Sec. 9, p. 183, gives the proof of a slightly less general theorem.

Cauchy: Exercices de mathematiques, 1826, I, p. 49 (23), obtains as a by-product the second conclusion of the theorem for the case d = -1, and remarks that it is well known.

In finding the sum of certain series by the method of differences^{**} it is convenient to express positive integral powers of x in terms of the polynomials

(1) $x^{(n)} = x(x-1) \ (x-2) \ \dots \ (x-n+1)$ $n = 1, 2, 3, \dots$ $x^{(0)} = 1$

If we set

(2) $x^n = A(o, n)x^{(0)} + A(1, n)x^{(1)} + \dots + A(k, n)x^{(k)} + \dots + A(n, n)x^{(n)}$ it is easily shown that (3) A(k, n) = S(k, n)/S(k, k)

whence

(4) A(k, n), $k, n = 0, 1, 2, 3, \ldots$, vanishes if n < k; is always positive if $n \ge k > 0$; in particular A(n, n) = 1; and the following relations come from those given in §2 for S(k, n):

(5)
$$A(k, n) = \sum_{i=k}^{n} {\binom{n-1}{i-1}} A(k-1, i-1) = \frac{1}{k} \sum_{i=k}^{n} {\binom{n}{i-1}} A(k-1, i-1)$$

The recursion formula

(6)
$$A(k, n) = k A(k, n-1) + A(k-1, n-1)$$

by which may be constructed

A TABLE OF VALUES OF A(k, n)

	k = 0	k = 1	* k=2	k = 3	k = 4	k = 5	k = 6	k = 7	k=8
n = 0	1								
n = 1	0	1							
n = 2	0	1	1						
n = 3	0	1	3	1					
n = 4	0	1	7	6	1				
n = 5	0	1	15	25	10	1			
n = 6	0	1	31	90	65	15	1		
n = 7	0	1	63	301	350	140	21	1	
n = 8	0	1	127	966	1701	1050	266	28	1

To any entry add the product of the one on its right and the value of k above the latter.

**See for example Boole's Finite Differences, Chap. IV.

(7)
$$\sum_{i=k}^{n} {n \choose i} A(k, i) = A(k+1, n+1) \qquad n > k = 0, 1, 2, ...$$
(8)
$$\sum_{i=k}^{n} A(k, i) S(k-1, k-1) = 0 \qquad n = 2, 2, 4$$

(8)
$$\sum_{k=1}^{\infty} A(k, n) S(k-1, k-1) = 0$$
 $n = 2, 3, 4, \ldots$

Inversely, since

$$x^{(n+1)} = x(x-1) \ (x-2) \ \dots \ (x-n)$$
 $n = 0, 1, 2, \dots$

if we set

(9)
$$x^{(n+1)} = x[B(o, n)x^n - B(1, n)x^{n-1} + \ldots + (-1)^k B(k, n)x^{n-k} + \ldots + (-1)^n B(n, n)]$$

it is evident that B(o, n) = 1, $n = 0, 1, 2, \ldots, B(k, n) =$ the sum of the products of the numbers 1, 2, 3, ..., n, taken k at a time; in particular $B(k, k) = k! = (-1)^k S(k, k)$ and B(k, n) = 0 if k > n. For convenience define B(p, n) = 0, if p is a negative integer.

If we multiply both sides of

 $x^{(n)} = x[B(o, n-1)x^{n-1} - B(1, n-1)x^{n-2} + ... + (-1)^{n-1}B(n-1, n-1)]$ by x - n, and equate the coefficients of x^{n-k} , we obtain the recursion formula

(10)
$$B(k, n) = B(k, n-1) + n B(k-1, n-1)$$

by means of which may be constructed

A TABLE OF VALUES OF B(k, n)

	k = 0	k = 1	k=2	k = 3	k = 4	k = 5	k = 6	k=7	k=8
n = 0 $n = 1$ $n = 2$ $n = 3$ $n = 4$ $n = 5$ $n = 6$	1 1 1 1 1 1 1 1	$1 \\ 3 \\ 6 \\ 10 \\ 15 \\ 21$	2 11 35 85 175	6 50 225 735	$\begin{array}{c} 24\\ 274\\ 1624 \end{array}$	120 1764	720		
n = 7	1	28	322	1960	6769	13132	13068	5040	
n = 8	1	36	546	4536	22449	67284	118124	109584	40320

Multiply any entry by the number (n+1) of the next row, and add to the entry on its right.

(11)
$$B(k,k+n) = \sum_{i=k}^{n+k} {i \choose k} B(k+n-i,k+n-1)$$
 $k, n = 0, 1, 2, 3. ...$

The equation

$$B(0, n) x^{n} - B(1, n) x^{n-1} + \dots + (-1)^{n} B(n, n) = 0$$

has 1, 2, 3, n, for roots. If we set
$$S_{k} = 1^{k} + 2^{k} + 3^{k} + \dots + n^{k} \qquad k = 1, 2, 3, \dots$$

and solve Newton's formulae* we obtain

$$B(k,k) B(k,n) = \begin{vmatrix} S_1 & 1 & 0 & 0 & \dots & 0 \\ S_2 & S_1 & 2 & 0 & \dots & 0 \\ S_3 & S_2 & S_1 & 3 & \dots & 0 \\ S_4 & S_3 & S_2 & S_1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ S_k & S_{k-1} & S_{k-2} & S_{k-3} & \dots & S_1 \end{vmatrix} \ k,n = 1, 2, 3..$$

This determinant vanishes when k > n.

Inversely,

These sums of the powers of the first *n* natural numbers are connected by the following relations, in which I(k/2) signifies the integral part of k/2:

$$\sum_{i=0}^{l(k-2)} \binom{k}{2i+1} S_{2k-1-2i} = \dagger 2^{k-1} S_1^{-k}$$

$$\sum_{i=0}^{l(k-2)} \frac{2k+1-2i}{1+2i} \binom{k}{2i} S_{2k-2i} = (2n+1) 2^{k-1} S_1^{-k}$$

whence

$$\sum_{i=0}^{k} c_i \binom{k}{i} S_{2k \to i} = 0 \quad \text{where } c_i = \frac{2k+1-i}{1+i} \text{ when } i \text{ is even}$$
$$= -(2n+1) \quad \text{when } i \text{ is odd}$$

^{*}See, for example, Cajori's Theory of Equations, pp. 85-86. †Stern, Crelle's Journal, Vol. 84, pp. 216-218.

Also

$$\sum_{i=0}^k \binom{k+1}{i} S_i = ** (n+1)^{k+1} - 1$$

Relations between the A's and the B's:

$$x^{m} = \sum_{i=1}^{m} A(i, m) x^{(i)} \qquad m = 1, 2, 3 \dots$$
$$x^{(i)} = \sum_{j=0}^{i-1} (-1)^{j} B(j, i-1) x^{i-j} \qquad i = 1, 2, 3, \dots$$

Therefore

$$x^{m} = \sum_{i=1}^{m} A(i, m) \sum_{j=0}^{i-1} (-1)^{j} B(j, i-1) x^{i-j}$$

the coefficient of x^k on the right is

$$\sum_{i=0}^{m-k} (-1)^i A(k+i, m) B(i, k+i-1)$$

and this must vanish $k = 1, 2, 3, \dots, m-1$, and be equal to 1, for k = m.

Whence, setting n for m - k,

$$\sum_{i=0}^{n} (-1)^{i} A(k+i, k+n) B(i,k+i-1) = 0, \qquad \begin{cases} k = 0, 1, 2, \dots \\ n = 1, 2, 3, \dots \end{cases}$$

or, setting i for k + i, and n for m,

(12)
$$\sum_{i=k}^{n} (-1)^{i} A(i,n) B(i-k, i-1) = 0. \qquad \begin{cases} k = 0, 1, 2, \dots, n-1 \\ n = 1, 2, 3, \dots, \end{cases}$$

Similarly, starting from

$$x^{(m)} = \sum_{i=0}^{m-1} (-1)^{i} B(i, m-1) x^{m-i}$$

we obtain

(13)
$$\sum_{i=0}^{n} (-1)^{i} A(k, k+n-i) B(i, k+n-1) = 0,$$

 $\begin{cases} k = 0, 1, 2, \dots \\ n = 1, 2, 3, \dots \end{cases}$

This relation may be generalized as follows:

Set

$$C(k,n,p) = \sum_{i=0}^{n} (-1)^{i} A(k, k+n-i) B(i, k+n-p)$$

^{**}Prestet, Elements de Mathematique, p. 178.

then directly and by (13)

(a)
$$C(k,o,p) = 1$$
 $p = 0, 1, 2, \dots$
 $C(k,n,1) = 0$ $n = 1, 2, 3, \dots$ $k = 0, 1, 2, \dots$

making use of (10) we obtain

(b)
$$C(k,n,p) = C(k,n,p-1) + (k+n-p-1) C(k,n-1,p-1)$$

The left side vanishes when p = 1; therefore

$$C(k,n,0) = -(k+n) C(k,n-1,0)$$

By repeating this (n-1) times and noting that C(k,0,0) = 1, we obtain

(c)
$$C(k,n,0) = (-1)^n (k+1) (k+2) \dots (k+n)$$

 $\begin{cases} k = 0, 1, 2, \dots \\ n = 1, 2, 3, \dots \end{cases}$

Setting $p = 2, 3, 4, ..., \tilde{n}$, in (b), we find

(d)
$$C(k,n,p) = 0$$
 for $p = 1, 2, 3, ..., n$
= k^n when $p = n + 1$

Therefore for all values of $k = 0, 1, 2, \ldots$; and $n = 1, 2, 3, \ldots$

(14)
$$\sum_{i=0}^{n} (-1)^{i} A(k, k+n-i) B(i, k+n-p) = (-1)^{n} (k+1) (k+2) \dots (k+n)$$

when $p = 0$

= 0 when $p = 1, 2, 3 \dots n$ = k^n when p = n+1

Example illustrating (14) for k = 2, n = 3.

		<i>i</i> =0	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3	
	A(2,5-i)	15	—7	3	-1	sums of products
p = 0	B(i,5)	1	15	85	225	$(-1)^3 3 4 5$
p = 1	B(i,4)	1	10	35	50	0
p = 2	B(i,3)	1	6	11	6	0
p = 3	B(i,2)	1	3	2	0	0
p = 4	B(i,1)	1	1	0	0	2 ³

In particular, when p = n,

$$\sum_{i=0}^{n} (-1)^{i} A(k, k+n-i) B(i, k) = 0$$

or, setting n-k for n

(15)
$$\begin{cases} \sum_{i=0}^{n-k} (-1)^{i} A(k, n-i) \ B(i, k) = 0 \\ \sum_{i=0}^{k} (-1)^{i} A(k, n-i) \ B(i, k) = 0 \end{cases}$$
 provided $n > k = 0, 1, 2, 3, ...$

The two sums are equivalent since for i > k, B(i, k) vanishes and for i > n-k, A(k, n-i) vanishes.

From (15)

$$A(k,n) = \sum_{i=1}^{k} (-1)^{1+i} A(k, n-i) B(i, k), \qquad n > k = 0, 1, 2, \ldots$$

whence

$$B(k,n) = \sum_{i=1}^{k} (-1)^{1+i} B(k-i,n) A(n, n+i), \quad n > k = 0, 1, 2, \ldots$$

Solving for the successive A's and B's, and for brevity writing A_1 , A_2 for A(n, n+1), A(n, n+2) etc., and B_1 , B_2 , for B(1,k), B(2, k) etc.,

$$B(3,n) = A_1^3 - 2A_1 A_2 + A_3$$

etc., etc., in exactly the same form as the B's.

S(k,n) satisfies the linear difference equation of order k_{i}

(16)
$$S(k,n+k) - B(1,k) S(k,n+k-1) + \ldots + (-1)^{i} B(i,k) S(k,n+k-i) + \ldots$$

 $\ldots + (-1)^{k} B(k,k) S(k,n) = 0$

of which the characteristic equation has for roots $1, 2, 3 \ldots k$; and the conditions

$$S(k, n) = 0; n = 1, 2, 3..., k-1; S(k, k) = (-1)^{k} k!$$

are exactly sufficient to determine the constants. These two equations, therefore, completely characterize

$$S(k,n) = \sum_{i=0}^{k} (-1)^{i} \begin{pmatrix} k \\ i \end{pmatrix} i^{n}$$

In like manner, the difference equation

(17)
$$A(k,n+k) - B(1,k) A(k,n+k-1) + \dots + (-1)^{k} B(i,k) A(k,n+k-i)$$

+ $\dots + (-1)^{k} B(k,k) A(k,n) = 0$

and the conditions

$$A(k, n) = 0, \quad n = 1, 2, 3 \dots k - 1; \quad A(k, k) = 1$$

completely characterize $A(k,n) = \frac{1}{S(k,k)} \sum_{i=0}^{k} (-1)^{i} {k \choose i} i^{n}$

B(k,n) satisfies the difference equation of order 2k + 1,

(18)
$$B(k, n + 2k + 1) - {\binom{2k+1}{1}} B(k, n + 2k) + \dots + (-1)^i {\binom{2k+1}{i}} B(k, n+2k+1-i) + \dots - B(k, n) = 0$$

of which the characteristic equation is

$$(x-1)^{2k+1} = 0$$

Whence B(k, n) is a polynomial of degree 2k in n, but the k + 1 obvious conditions

$$B(k, n) = 0, n = 0, 1, 2, 3, \ldots, k - 1, B(k, k) = k'$$

are not sufficient to determine the constants. It is possible, however, by the successive application of the method of differences, since

$$\triangle B(k,n) = (n+1) B(k-1,n)$$

to determine these constants for any particular value of k. Thus:

$$B(1,n) = \frac{1}{2} (n+1)n$$

$$B(2,n) = \frac{1}{24} (n+1)n(n-1) (3n+2)$$

$$B(3,n) = \frac{1}{48} (n+1)^2 n^2 (n-1) (n-2)$$

etc., etc.

§4.

The properties of

$$f(n,x,k) = \sum_{i=0}^{k} (-1)^{i} {\binom{k}{i}} (x+i)^{n}$$
 §2

and an application of $\sum_{i=0}^{k} (-1)^{i} {k \choose i} \frac{1}{x+i}$ in the theory or gamma functions suggests the generalization:

(1)
$$f(t,x,k,n) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} i^{n} (x+i)^{t}$$
$$k,n = 0, 1, 2, 3 \dots ; t = 0, \pm 1, \pm 2, \dots$$

Whence

(2) f(0,x,k,n) = S(k,n)(3) $f(t,x,0,n) = x^{t}$ = 0(4) $f(t,x,1,n) = x^{t} - (x+1)^{t}$ $= -(x+1)^{t}$ (5) $k,n = 0, 1, 2, \dots, \dots, n$ when n = 0 = 0when n > 0when n > 0when n > 0

When t < 0, this function has poles at $x = -1, -2, \ldots, -k$, and also when n + t < 0, at x = 0.

Since
$$f(t,x,k,n) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} i^{n} (x+i)^{t-m} (x+i)^{m}$$

we have the recursion formula

(5)
$$f(t,x,k,n) = \sum_{i=0}^{m} {m \choose i} x^{i} f(t-m,x,k,m+n-i)$$

$$t = 0, \pm 1, \pm 2, \ldots, ; k, n = 0, 1, 2, 3, \ldots, ; m = 1, 2, 3, \ldots$$

If t is not negative, we have on setting t for m in (5)

(6)
$$f(t,x,k,n) = \sum_{i=0}^{t} {t \choose i} x^{i} S(k,t+n-i) \qquad k,n,t = 0, 1, 2, 3 \dots$$

If $0 < n = k$

$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} i^{(n)} (x+i)^{t} = (-1)^{n} k^{(n)} f(t,x+n,k-n,0) \qquad n = 1, 2, 3 \dots k$$

Wh ence, making use of (2) §3,

(7)
$$f(t,x,k,n) = \sum_{i=0}^{n} (-1)^{i} A(i,n) k^{(i)} f(t,x+i,k-i,0)$$
 $n = 1, 2, 3 \dots k.$

In (5), setting n = 0, m = 1, and t+1 for t:

$$f(t+1,x,k,0) = f(t,x,k,1) + x f(t,x,k,0)$$

but by (7)

$$f(t,x,k,1) = -k f(t,x+1,k-1,0)$$

Therefore,

(8) x f(t,x,k,0) = f(t+1,x,k,0) + k f(t,x+1,k-1,0), $k = 1, 2, 3 \dots$ In (5) setting t = 0:

(9)
$$\sum_{i=0}^{m} {m \choose i} x^{i} f(-m.x,k,n+m-i) = S(k,n)$$

k,n = 0, 1, 2,; m = 1, 2, 3,

Now S(k,n) vanishes if k > n; therefore f(-m,x,k,n) satisfies the linear homo geneous difference equation of order m:

(10)
$$\sum_{i=0}^{m} {m \choose i} x^{i} f(-m, x, k, n+m-i) = 0.$$

 $k > n = 0, 1, 2 \dots m = 1, 2, 3, \dots$

of which the characteristic equation is

 $(r+x)^m = 0$

whence the complete solution is

(11)
$$f(-m,x,k,n) = (c_0 + c_1n + \ldots + c_{m-1} n^{m-1}) (-x)^n$$
$$m = 1, 2, 3 \ldots; n = 0, 1, 2, \ldots k-1; \text{ not for } n = k;$$

however, the equation (10) itself will give f(-m,x,k,n) for

$$n = k, k+1, \ldots, k+m-1$$

For m = 1, we have

$$f(-1,x,k,n) = c_0 (-x)^n$$
 $n = 0, 1, 2, 3, \ldots, k.$

and setting n = 0, we determine

$$c_0 = f(-1, x, k, 0).$$

setting t = -1 in (8)

$$f(-1,x,k,0) = \frac{1}{x} \left[S(k,0) + k f(-1,x+1,k-1,0) \right]$$

= $\frac{1}{x}$ when $k = 0$
= $\frac{k}{x} f(-1,x+1,k-1,0)$ $k = 1, 2, 3 ...$

whence by repetition, and noting (3)

$$f(-1,x,k,0) = \frac{k!}{x(x+1)(x+2)\dots(x+k)}^*$$

and

$$f(-1,x,k,n) = \frac{(-x)^n k!}{x(x+1)....(x+k)} \qquad n = 0, 1, 2, 3 \dots k-1$$

therefore, since by (10), f(-1,x,k,k) = -x f(-1,x,k,k-1),

(12)
$$f(-1,x,k,n) = \frac{(-x)^n k!}{x(x+1)\dots(x+k)} \quad n = 0, 1, 2, 3 \dots k, \text{ but not } n > k.$$

Example:

$$x(x+1) (x+2) (x+3) (x+4) \sum_{i=0}^{4} (-1)^{i} {4 \choose i} \frac{i^{n}}{x+i} = 24$$
 when $n = 0$
$$= -24x \qquad n = 1$$

$$= 24x^{2} \qquad n = 2$$

$$= -24x^{3} \qquad n = 3$$

$$= 24x^{4} \qquad n = 4$$

but
$$= 240x^{4} + 840x^{3} + 1200x^{2} + 576x, n = 5$$

To find the value of f(-1,x,k,n) for n > k, set m = 1 in (9) and multiply through by

$$(x+1)(x+2)$$
 . . . $(x+k)/S(k,k) = \sum_{i=0}^{k} B(i,k)x^{k-i}/S(k,k)$

and set

$$g(-1,x,k,n) \quad \text{for} \quad f(-1,x,k,n) \sum_{i=0}^{k} B(i,k) x^{k-i} / S(k,k):$$

$$g(-1,x,k,n+1) = A(k,n) \sum_{i=0}^{k} B(i,k) x^{k-i} - xg(-1,x,k,n)$$

$$k,n = 0, 1, 2, \dots \dots$$

Setting n = k, k+1, we verify that

(13)
$$g(-1,x,k,k+n) = \sum_{j=1}^{n} (-1)^{j-1} A(k,k+n-j) \sum_{i=j}^{k} B(i,k) x^{k+j-i-1}$$

holds for n = 1, n = 2; and a complete induction shows, on taking account of (14) §3, (p = n), that it holds for all positive integral values of n. On

^{*}See Chrystal: Algebra II, Ex. 26, p. 20.

changing the order of summation and replacing g(-1,x,k,n) by its value, we have

(14)
$$f(-1,x,k,n) = \frac{\sum_{j=1}^{k} x^{j} \sum_{i=1}^{j} (-1)^{i-1} B(k-j+i,k) S(k,n-i)}{x(x+1) (x+2) \dots (x+k)}$$
$$n > k = 0, 1, 2, \dots \dots$$

the numerator being a polynomial arranged according to ascending powers of x_i on arranging this in descending powers of x_i taking account of (14) §3.

(15)
$$f(-1,x,k,n) = \frac{\sum_{j=0}^{k-1} x^{k-j} \sum_{i=0}^{j} (-1)^{i} B(j-i,k) S(k,n+i)}{x(x+1) (x+2) \dots (x+k)}$$
$$n > k = 0, 1, 2, 3 \dots \dots$$

It is obvious that (14) does not hold for $n \le k$, since in that case S(k,n-i) vanishes, $i = 1, 2, \ldots, n$; on the other hand, noting that B(k,n) and S(k,n) both vanish if k > n and taking account of (15), §3, it results that in the numerator on the right side of (15), when $n \le k$, the coefficient of every power of x vanishes except that of x^n and this turns out to be

$$(-1)^{k - n} B(0,k)S(k,k) = (-1)^{n}k!$$
 which agrees with (12).

Therefore,

(16)
$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} \frac{i^{n}}{x+i} = \frac{\sum_{j=0}^{k-1} x^{k-j} \sum_{i=0}^{j} (-1)^{i} B(j-i,k) S(k,n+i)}{x(x+1) (x+2) \dots (x+k)}$$
$$k, n = 1, 2, 3 \dots (x+k)$$

but for the case where $n \stackrel{\overline{}}{\leq} k$, (12) is simpler.

Setting m = 2 in (11) (17) $f(-2,x,k,n) = (c_0 + c_1 n) (-x)^n$ $n = 0, 1, 2, \dots, k-1$. Put n = 0, n = 1, and determine

$$c_{0} = f(-2,x,k,0)$$

$$c_{1} = -\frac{1}{x} f(-2,x,k,1) - f(-2,x,k,0), \quad \text{which by (7)}$$

$$= \frac{k}{x} f(-2,x+1,k-1,0) - f(-2,x,k,0)$$

In (8) set t = -2, k = 1

$$x f(-2,x,1,0) = f(-1,x,1,0) + f(-2,x+1,0,0)$$

whence by (12) and (3)

$$\begin{split} f(-2,x,1,0) \ &= \ \frac{1}{x^2(x+1)} \ + \ \frac{1}{x(x+1)^2} \\ &= \ \frac{1!}{x^2(x+1)^2} \quad \sum_{i=0}^1 \ (1+i) \ B(1-i,1) \ x^i \end{split}$$

Again, setting k = 2 in (8)

$$\begin{split} f(-2,x,2,0) &= \frac{1}{x} f(-2,x,1,0) + \frac{2}{x} f(-2,x+1,1,0) \\ &= \frac{2!}{x^2(x+1)^2(x+2)^2} \sum_{i=0}^2 (1+i) \ B(2-i,2) \ x^i \end{split}$$

Assume

(18)
$$f(-2,x,k,0) = \frac{k!}{x^2(x+1)^2 \cdots (x+k)^2} \sum_{i=0}^k (1+i) B(k-i,k) x^i$$

and a complete induction, on taking account of (11) 3, shows that this holds for all positive integral values of k.

Therefore:

$$c_{0} = \frac{k!}{x^{2}(x+1)^{2} \cdots (x+k)^{2}} \sum_{i=0}^{k} (1+i) B(k-i,k) x^{i}$$
$$-c_{1} = \frac{k!}{x^{2}(x+1)^{2} \cdots (x+k)^{2}} \sum_{i=0}^{k} B(k-i,k) x^{i}$$

and

(19)
$$f(-2,x,k,n) = \frac{(-x)^n k!}{x^2(x+1)^2 \cdots (x+k)^2} \sum_{i=0}^k (1+i-n) B(k-i,k) x^i$$
$$k = 0, 1, 2 \dots; n = 1, 2, 3 \dots k-1$$

On computing, by means of (10), the values of f(-2, x, k, k) and f(-2, x, k, k+1), we verify that (19) holds for $n = 1, 2, 3 \ldots \ldots k+1$ but not for n > k+1,

Therefore,

(20)
$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} \frac{i^{n}}{(x+i)^{2}} = \frac{(-x)^{n} k!}{x^{2}(x+1)^{2} \cdots (x+k)^{2}} \sum_{i=0}^{k} (1+i-n) B(k-i,k)x^{i}$$

$$k = 0, 1, 2, \dots, ; n = 0, 1, 2, \dots, k+1; \text{ not } n > k+1$$

29-4966

The corresponding results for n = k + 2, k + 3, etc., may be found by putting these values successively for n in

(21)
$$f(-2,x,k,n+2) = S(k,n) - 2xf(-2,x,k,n+1) - x^2f(-2,x,k,n)$$

which results from setting m = 2 in (9). The general result may be put into the form

(22)
$$f(-2,x,k,n) = \frac{\sum_{j=0}^{2k-2} x^{2k-j} \sum_{i=0}^{k-1} D(i,j,k) \ S(k-i,n)}{x^2(x+1)^2 \dots \dots (x+k)^2}; \qquad k,n = 1, 2, 3 \dots$$

in which the coefficients D, are independent of n:

but I have not been able to determine a general formula for D(i,j,k) by means of which to calculate the coefficients of f(-2,x,k,p), p>k+1, without first calculating successively those for $n = k+2, k+3, \ldots, p-1$.

By making use of $(10) \S 2$, (21) may be reduced to

(23)
$$f(-2,x,k,n) = \frac{\sum_{j=0}^{2k-2} x^{2k-j}}{x^2(x+1)^2 \dots \dots (x+k)^2}; \quad k,n = 1, 2, 3 \dots$$

with which compare (16)

Example:

$$x^{2}(x+1)^{2}(x+2)^{2}(x+3)^{2}(x+4)^{2}\sum_{i=0}^{4}(-1)^{i}\binom{4}{i}\frac{i^{n}}{(x+i)^{2}}=S(4,n)\ x^{8}+$$

$$[12 \ S(4,n) + 8 \ S(3,n)] \ x^7 + \\ [58 \ S(4,n) + 76 \ S(3,n) + 36 \ S(2,n)] \ x^5 + \\ [144 \ S(4,n) + 272 \ S(3,n) + 288 \ S(2,n) + 96 \ S(1,n)] \ x^5 + \\ [193 \ S(4,n) + 460 \ S(3,n) + 780 \ S(2,n) + 720 \ S(1,n)] \ x^4 + \\ [132 \ S(4,n) + 368 \ S(3,n) + 840 \ S(2,n) + 1680 \ S(1,n)] \ x^3 + \\ [36 \ S(4,n) + 112 \ S(3,n) + 312 \ S(2,n) + 1200 \ S(1,n)] \ x^2 \\ n = 1, 2, 3 \dots ...$$

also:

$$= S(4,n) x^{8} + [20 S(4,n) - 2 S(4,n+1)] x^{7} + [170 S(4,n) - 40 S(4,n+1) + 35 S(4,n+2)] x^{6} + [800 S(4,n) - 340 S(4,n+1) + 60 S(4,n+2) - 4 S(4,n+3)] x^{5} + [2153 S(4,n) - 1350 S(4,n+1) + 335 S(4,n+2) - 30 S(4,n+3)] x^{4} + [3020 S(4,n) - 2402 S(4,n+1) + 700 S(4,n+2) - 70 S(4,n+3)] x^{3} + [1660 S(4,n) - 1510 S(4,n+1) + 476 S(4,n+2) - 50 S(4,n+3)] x^{2} n = 1, 2, 3$$

These results are consistent with (20) for n = 1, 2, 3, 4, 5 and for n = 6 give

$$\frac{1560 x^8 + 14400 x^7 + 51672 x^6 + 59520 x^5 + 100320 x^4 + 57600 x^3}{+ 13824 x^2}$$

Purdue University.

