Some Properties of Binomilal Coefficients.

A. M. Kenyon.

\qquad
$\$ 1$.
The binominal coefficients of the expansion

$$
(x+y)^{k}=\binom{k}{0} x^{k}+\binom{1}{1} x^{k-1} y+\binom{k}{2} x^{k-2} y^{2}+\ldots+\binom{k}{k} y^{k}
$$

were known to possess a simple recursion formula

$$
\begin{equation*}
\binom{k}{n}+\binom{k}{n+1}=\binom{k+1}{n+1} \quad k, n=0,1,2,3 \tag{1}
\end{equation*}
$$

by means of which Pascal's Triangle*

	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$	etc.
$k=0$	1					
$k=1$	1	1				
$k=2$	1	2	1			
$k=3$	1	3	3	1		
$k=4$	1	4	6	4	1	
etc.	-	-	-	-	-	-

could be built up, before Newton showed that they are functions of k and n :

$$
\left.\begin{array}{l}
\binom{k}{n}=k(k-1) \cdots(k-n+1), n=1,2,3, \ldots \tag{2}\\
\left(\begin{array}{l}
k \\
n
\end{array}\right\}=1
\end{array}\right\} k=0,1,2 \ldots
$$

A great number of relations involving binomial coefficients have been discovered**; some of the most useful of these are

$$
\begin{equation*}
n\binom{k}{n}=k\binom{k-1}{n-1} ;\binom{k}{n}=\frac{k}{k-n}\binom{k-1}{n} ;\binom{k}{n}=0 \text { if } n>k . \tag{3}
\end{equation*}
$$

[^0]From (1) and (3) it follows that $\binom{k}{n}$ satisfies the linear difference equation

$$
(n+1) f(n+1)+(n-k) f(n)=0
$$

It is well known that the sum of the coefficients $(x+y)^{k}$ is 2^{k} and that the sum of the odd numbered coefficients is equal to the sum of the even numbered ones; the following are perhaps not so well known:
(4) If, beginning with the second, the coefficients of $(x-y)^{k}$ be multiplied by $c^{n},(2 c)^{n},(3 c)^{n}, \ldots \ldots(k c)^{n}$ respectively; c being arbitrarily chosen different from zero, the sum of the products will vanish for $n=1,2,3, \ldots$. $k-1$ but not for $n>k$, e. g.

$$
\begin{array}{lrrrrrrrr}
k=8 & -8, & 28, & -56, & 70, & -56, & 28, & -8, & 1 \\
c=2 & 2^{n}, & 4^{n}, & 6^{n}, & 8^{n}, & 10^{n}, & 12^{n}, & 14^{n}, & 16^{n} \\
\hline
\end{array}
$$

The sum of the products vanishes for $n=1,2 \ldots \ldots$. . . 7; but not for $n>7$; for $n=8$ it is $10,321,920$.
(5) If the first k coefficients of $(x-y)^{k+1}$ be multiplied term by term, with $k^{n},(k-1)^{n},(k-2)^{n}, \ldots \ldots \ldots 1^{n},(n, k=1,2,3, \ldots \ldots)$ the sum of the products will be

$$
(-1)^{k+n} \text { if } n \overline{<} k \quad \text { and }(k+1)!-1 \quad \text { if } n=k+1 ;
$$

in particular

$$
k^{k}\binom{k+1}{0}-(k-1)^{k}\binom{k+1}{1}+(k-2)^{k}\binom{k+2}{2}-\ldots+(-1)^{k-1}\left(\begin{array}{c}
k+1 \\
k-1 \\
k-1
\end{array}\right)=1
$$

e. g. take $k=5$.

$$
\begin{array}{ccccc}
1, & -6, & 15, & -20, & 15, \\
5^{n}, & 4^{n}, & 3^{n}, & 2^{n}, & 1^{n}, \\
\hline
\end{array}
$$

The sum of the products is $+1,-1,+1,-1,+1,719$, for $n=1,2,3,4,5$, 6 , respectively.

Both (4) and (5) are special cases of
(6) If the coefficients of $(x-y)^{k},(k=1,2,3, \ldots)$ be multiplied term by term by the nth powers ($n=0,1,2, \ldots$) of the terms of any arithmetic progression with common difference $d \pm 0$, the sum of the products will vanish if $n<k$; will be $(-d)^{k}\left(k^{\prime}\right)$ if $n=k$; and if $n=k+1$ will be the product of this last result and the sum of the terms of the arithmetic progression.
g. take $k=6, d=-1$, a.p., $4,3,2$, etc.

$$
\begin{array}{cccccc}
1, & -6, & 15, & -20, & 15, & -6, \\
4^{n}, & 3^{n}, & 2^{n}, & 1^{n}, & 0^{n}, & (-1)^{n} \\
\hline
\end{array}
$$

The sum of the products vanishes for $n=1,2,3,4,5$, but not for $n>5$; for $n=6$, it is $(-1)^{6}(6!)=720$; and for $n=7$, it is $720(4+3+2+1+0-1-2)=5040$.

The third conclusion of (6) shows that if
(I) $a+(a+d)+(a+2 d)+\ldots \ldots \ldots+(a+k d)$ and

$$
\begin{equation*}
\binom{k}{0} a^{k}-\binom{k}{1}(a+d)^{k}+\binom{k}{2}(a+2 d)^{k}-\ldots \ldots+(-1)^{k}\binom{k}{k}(a+k d)^{k} \tag{II}
\end{equation*}
$$

be multiplied term by term and the $(k+1)$ products be added, the result will be the same as though (II) be multiplied through by the terms of (I) in succession and the $(k+1)^{2}$ products be added; e.g. take $k=4, a=1, d=2$

1	,	3	,	5	,	7	,	9
$1 \cdot 1^{4}$,	$-4 \cdot 3^{4}$,	65^{4}	,	$-4^{\cdot} 7^{4}$,	19^{4}
1	-	972	+	18750	-	67228	+59049	

	11^{4}	-43^{4}	65^{4}	-4^{4}	$7^{4} 9^{4}$	
1	1	-324	3750	-9604	6561	384
3	3	-972	11250	-28812	19683	1152
5	5	-1620	18750	-48020	32805	1920
7	7	-2268	26250	-67228	45927	2688
9	9	-2916	33750	-86436	59049	3456
	25	-8100	+93750	-240100	+164025	9600

$\$ 2$.

The properties noted above, and many others, can be made to depent upon those of the sum
(1) $S(k, n)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} i^{n} \quad k, n=0,1,2,3, \ldots$

It is readily shown that
(2) $S(k, n)$ vanishes for $k>n$

$$
\left.\begin{array}{rl}
S(k, n) & =-k \sum_{i=k}^{n}\binom{n-1}{i-1} S(k-1, i-1) \tag{3}\\
& =-\sum_{i=k}^{n}\binom{n}{i-1} S(k-1, i-1)
\end{array}\right\} k, n=0,1,2,3, \ldots
$$

436

whence $S(k, n)$ is divisible by $k!$ and in fact $S(n, n)=(-1)^{n} n!$ Also, since $S(1, n)<0$, it follows that for fixed $k, S(k, n)$ preserves a constant sign (or vanishes) for all values of n : and this sign is the same as that of $(-1)^{k}$.

These numbers possess a recursion formula
(4) $S(k, n)=k[S(k, \mathrm{n}-1)-S(k-1, n-1)]$

$$
n, k=0,1,2, \ldots
$$

by means of which may be constructed,
A TABLE OF VALUES OF $S(k, n)$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
$n=0$	1					$k=$			
$n=1$	0	-1							
$n=2$	0	-1	2						
$n=3$	0	-1	6	-6					
$n=4$	0	-1	14	-36	24				
$n=5$	0	-1	30	-150	240	-120			
$n=6$	0	-1	62	-540	1560	-1800	720		
$n=7$	0	-1	126	-1806	8400	-16800	15120	-5040	
$n=8$	0	-1	254	-5796	40824	-126000	191520	-141120	40320

Subtract any entry from the one on its right, multiply by the value of k above the latter.

$$
\begin{array}{lr}
\sum_{k=0}^{n} S(k, n)=(-1)^{n} & \sum_{k=2}^{n} S(k, n)=1+\cos n \pi \\
\sum_{k=1}^{n} \frac{S(k, n)}{k}=0 & n=2,3,4, \ldots
\end{array}
$$

$$
\begin{gather*}
\sum_{i=k}^{n}\binom{n+1}{i} S(k, i)=(k+1) \sum_{i=k}^{n}\binom{n}{i} S(k, i) \tag{7}\\
\sum_{i=k}^{n}\binom{n}{i} S(k, i)=S(k, n)-S(k+1, n) \tag{8}
\end{gather*}
$$

Setting $n=k+1$ in (7) we obtain

$$
\begin{equation*}
S(k, k+1)=\binom{k+1}{2} S(k, k) \tag{9}
\end{equation*}
$$

and similarly we can express $S(k, k+2), S(k, k+3)$, etc. in terms of $S(k, k)$.
From (4)

$$
S(k, n)=S(k+1, n)-\frac{1}{k+1} S(k+1, n+1) \quad k, n=0,1,2,3, \ldots
$$

By applying this m times, we obtain

$$
\begin{align*}
S(k, n)= & \sum_{i=0}^{m}(-1)^{i} H_{i} \quad S(k+m, n+i) \tag{10}\\
& k, n=0,1,2, \ldots ; m=1,2,3, \ldots
\end{align*}
$$

where H_{i} is the sum of the products of the fractions $1 /(k+1), 1 /(k+2), 1 /(k+3)$, $\ldots . .1 /(k+m)$, taken i at a time; $H_{0}=1$.

The proof of (6) $\S 1$ is as follows. If the first term of the arithmetic progression is zero,

$$
\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(d i)^{n}=d^{n} S(k, n)
$$

and this vanishes if $n<k$; is $(-\mathrm{d})^{k}(k!)$ if $n=k$; and is

$$
(-d)^{k}\left(k^{\prime}\right)[d+2 d+3 d+\ldots+k d] \text { if } n=k+1
$$

If the first term of the arithmetic progression is $a \pm 0$,
where $x=a / d \pm 0$.
If we use the notation

$$
f(n, x, k) \equiv \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(x+i)^{n}
$$

expand $(x+i)^{n}$ by the binomial formula and reverse the order of summation, we obtain

$$
\begin{equation*}
f(n, x, k)=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} S(k, i) \tag{11}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
f(n, x, k,) & =0 \quad \text { when } n<k, \text { since all the summands vanish } \\
& =S(k, k) \text { when } n=k \\
& =\sum_{i=k}^{n}\binom{n}{i} x^{n-i} S(k, i) \quad \text { when } n>k
\end{aligned}
$$

In particular, when $n=k+1$

$$
f(k+1, x, k)=\left(x+\frac{k}{2}\right)(k+1) S(k, k) \quad \text { and on putting } a / d \text { for } x
$$

$d^{k+1} f(k+1, x, k)=d^{k} S(k, k)[a+(a+d)+(a+2 d)+\ldots+(a+k d)]$ and from these follow the three conclusions* of (6) §1.

[^1]
§3.

In finding the sum of certain series by the method of differences** it is convenient to express positive integral powers of x in terms of the polynomials
(1) $x^{(n)}=x(x-1)(x-2) \ldots(x-n+1) \quad n=1,2,3, \ldots$ $x^{(n)}=1$

If we set
(2) $x^{n}=A(o, n) x^{(0)}+A(1, n) x^{(1)}+\ldots \ldots+A(k, n) x^{(k)}+\ldots+A(n, n) x^{(n)}$ it is easily shown that

$$
\begin{equation*}
A(k, n)=S(k, n) / S(k, k) \tag{3}
\end{equation*}
$$

whence
(4) $A(k, n), k, n=0,1,2,3, \ldots$, vanishes if $n<k$; is always positive if $n \overline{>} k>0$; in particular $A(n, n)=1$; and the following relations come from those given in $\S 2$ for $S(k, n)$:

$$
\begin{equation*}
A(k, n)=\sum_{i=k}^{n}\binom{n-1}{i-1} A(k-1, i-1)=\frac{1}{k} \sum_{i=k}^{n}\binom{n}{i=1} A(k-1, i-1) \tag{5}
\end{equation*}
$$

The recursion formula

$$
\begin{equation*}
A(k, n)=k A(k, n-1)+A(k-1, n-1) \tag{6}
\end{equation*}
$$

by which may be constructed
a table of valufs of $A(k, n)$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
$n=0$	1								
$n=1$	0	1							
$n=2$	0	1	1						
$n=3$	0	1	3	1					
$n=4$	0	1	7	6	1				
$n=5$	0	1	15	25	10	1			
$n=6$	0	1	31	90	65	15	1		
$n=7$	0	1	63	301	350	140	21	1	
$n=8$	0	1	127	966	1701	1050	266	28	1

To any entry add the product of the one on its right and the value of k above the latter.
**See for example Boole's Finite Differences, Chap. IV.

$$
\begin{equation*}
\sum_{i=k}^{n}\binom{n}{i} A(k, i)=A(k+1, n+1) \quad n>k=0,1,2, \ldots \tag{7}
\end{equation*}
$$

(8)

$$
\sum_{k=1}^{n} A(k, n) S(k-1, k-1)=0 \quad n=2,3,4, \ldots
$$

Inversely, since

$$
x^{(n+1)}=x(x-1)(x-2) \ldots(x-n) \quad n=0,1,2, \ldots .
$$

if we set
(9) $\quad x^{(n+1)}=x\left[B(o, n) x^{n}-B(1, n) x^{n-1}+\ldots+(-1)^{k} B(k, n) x^{n-k}+\ldots\right.$.

$$
\left.\cdots \ldots+(-1)^{n} B(n, n)\right]
$$

it is evident that $B(o, n)=1, n=0,1,2, \ldots, B(k, n)=$ the sum of the products of the numbers $1,2,3, \ldots \ldots n$, taken k at a time; in particular $B(k, k)=k:=(-1)^{k} S(k, k)$ and $B(k, n)=0$ if $k>n$. For convenience define $B(p, n)=0$, if p is a negative integer.

If we multiply both sides of $x^{(n)}=x\left[B(o, n-1) x^{n-1}-B(1, n-1) x^{n-2}+\ldots+(-1)^{n-1} B(n-1, n-1)\right]$ by $x-n$, and equate the coefficients of x^{n-k}, we obtain the recursion formula

$$
\begin{equation*}
B(k, n)=B(k, n-1)+n B(k-1, n-1) \tag{10}
\end{equation*}
$$

by means of which may be constructed

$$
\text { a table of values of } B(k, n)
$$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
$n=0$	1								
$n=1$	1	1							
$n=2$	1	3	2						
$n=3$	1	6	11	6					
$n=4$	1	10	35	50	24				
$n=5$	1	15	85	225	274	120			
$n=6$	1	21	175	735	1624	1764	720		
$n=7$	1	28	322	1960	6769	13132	13068	5040	
$n=8$	1	36	546	4536	22449	67284	118124	109584	40320

Multiply any entry by the number ($n+1$) of the next row, and add to the entry on its right.
(11) $B(k, k+n)=\sum_{i=k}^{n+k}\binom{i}{k} B(k+n-i, k+n-1) \quad k, n=0,1,2,3 \ldots$

The equation

$$
B(0, n) x^{n}-B(1, n) x^{n-1}+\ldots+(-1)^{n} B(n, n)=0
$$

has $1,2,3, \ldots \ldots n$, for roots. If we set

$$
S_{k}=1^{k}+2^{k}+3^{k}+\ldots .+n^{k} \quad k=1,2,3 \ldots .
$$

and solve Newton's formulae* we obtain

$$
B(k, k) B(k, n)=\left|\begin{array}{cccccc}
S_{1} & 1 & 0 & 0 & \ldots \ldots & 0 \\
S_{2} & S_{1} & 2 & 0 & \ldots \ldots & 0 \\
S_{3} & S_{2} & S_{1} & 3 & \ldots \ldots & 0 \\
S_{4} & S_{3} & S_{2} & S_{1} & \ldots \ldots \ldots & 0 \\
\cdots & \ldots & \cdots & \cdots & \ldots \ldots \ldots
\end{array}\right| k, n=1,2,3 .
$$

This determinant vanishes when $k>n$.
Inversely,

$$
\begin{aligned}
& B(1, n) \quad B(0, n) \quad 0 \quad \ldots \ldots \ldots \ldots .0 \\
& 2 B(2, n) \quad B(1, n) \quad B(0, n) \quad \ldots \ldots \ldots, 0 \\
& 3 B(3, n) \quad B(2, n) \quad B(1, n) \quad \ldots \ldots \ldots .0 \\
& S_{k}= \\
& k B(k, n) \quad B(k-1, n) \quad B(k-2, n) \ldots \ldots . \quad B(1, n) \\
& k, n=1,2,3 \ldots \ldots \text { (even if } k>n \text {) }
\end{aligned}
$$

These sums of the powers of the first n natural numbers are connected by the following relations, in which $I(k / 2)$ signifies the integral part of $k / 2$:

$$
\begin{aligned}
& \sum_{i=0}^{I(k)^{2)}}\binom{k}{2 i+1} S_{2 k-1-2 i}=\dagger 2^{k-1} S_{1}^{k} \\
& I\left(k^{2}\right) \\
& \sum_{i=0}^{2} \frac{2 k+1-2 i}{1+2 i}\binom{k}{2 i} S_{2 k-2 i}=(2 n+1) 2^{k-1} S_{1}{ }^{k}
\end{aligned}
$$

whence

$$
\begin{aligned}
\sum_{i=0}^{k} c_{i}\binom{k}{i}{\underset{S}{2 k-i}}^{S_{2}}=0 \quad{ }^{\text {where }} c_{i} & =\frac{2 k+1-i}{1+i} \text { when } i \text { is even } \\
& =-(2 n+1) \quad \text { when } i \text { is odd }
\end{aligned}
$$

[^2]Also

$$
\sum_{i=0}^{k}\binom{k+1}{i} S_{i}={ }^{* *}(n+1)^{k+1}-1
$$

Relations between the A's and the B's:

$$
\begin{array}{ll}
x^{m}=\sum_{i=1}^{m} A(i, m) x^{(i)} & m=1,2,3 \ldots \\
x^{(i)}=\sum_{j=0}^{i-1}(-1)^{j} B(j, i-1) x^{i-\jmath} & i=1,2,3, \ldots
\end{array}
$$

Therefore

$$
x^{m}=\sum_{i=1}^{m} A(i, m) \sum_{j=0}^{i-1}(-1)^{j} B(j, i-1) x^{i-j}
$$

the coefficient of x^{k} on the right is

$$
\sum_{i=0}^{m-k}(-1)^{i} A(k+i, m) B(i, k+i-1)
$$

and this must vanish $k=1,2,3, \ldots \ldots m-1$, and be equal to 1 , for $k=m$.
Whence, setting n for $m-k$,

$$
\sum_{i=0}^{n}(-1)^{i} A(k+i, k+n) B(i, k+i-1)=0, \quad\left\{\begin{array}{l}
k=0,1,2, \ldots \\
n=1,2,3, \ldots
\end{array}\right.
$$

or, setting i for $k+i$, and n for m,
(12) $\sum_{i=k}^{n}(-1)^{i} A(i, n) B(i-k, i-1)=0 . \quad\left\{\begin{array}{l}k=0,1,2, \ldots \ldots n-1 \\ n=1,2,3, \ldots \ldots\end{array}\right.$

Similarly, starting from

$$
x^{(m)}=\sum_{i=0}^{m-1}(-1)^{i} B(i, m-1) x^{m-i}
$$

we obtain
(13) $\sum_{i=0}^{n}(-1)^{i} A(k, k+n-i) B(i, k+n-1)=0$,

$$
\left\{\begin{array}{l}
k=0,1,2, \ldots \\
n=1,2,3, \ldots
\end{array}\right.
$$

This relation may be generalized as follows:
Set

$$
C(k, n, p)=\sum_{i=0}^{n}(-1)^{i} A(k, k+n-i) B(i, k+n-p)
$$

[^3]
442

then directly and by (13)
(a)

$$
\left.\begin{array}{ll}
C(k, o, p)=1 & p=0,1,2, \ldots . \\
C(k, n, 1)=0 & n=1,2,3, \ldots
\end{array}\right\} k=0,1,2, \ldots .
$$

making use of (10) we obtain
(b)

$$
C(k, n, p)=C(k, n, p-1)+(k+n-p-1) C(k, n-1, p-1)
$$

The left side vanishes when $p=1$; therefore

$$
C(k, n, 0)=-(k+n) C(k, n-1,0)
$$

By repeating this $(n-1)$ times and noting that $C(k, 0,0)=1$, we obtain
(c) $\quad C(k, n, 0)=(-1)^{n}(k+1)(k+2) \cdots(k+n) \quad\left\{\begin{array}{l}k=0,1,2, \ldots \\ n=1,2,3, \ldots\end{array}\right.$

Setting $p=2,3,4, \ldots \bar{n}$, in (b), we find

$$
\begin{align*}
C(k, n, p) & =0 & & \text { for } p=1,2,3, \ldots n \\
& =k^{n} & & \text { when } p=n+1
\end{align*}
$$

Therefore for all values of $k=0,1,2, \ldots \ldots$ and $n=1,2,3 \ldots \ldots$

$$
\begin{array}{r}
\sum_{i=0}^{n}(-1)^{i} A(k, k+n-i) B(i, k+n-p)=(-1)^{n}(k+1)(k+2) \ldots(k+n) \tag{14}\\
\text { when } p=0 \\
\\
=0 \text { when } p=1,2,3 \ldots n \\
\\
=k^{n} \text { when } p=n+1
\end{array}
$$

Example illustrating (14) for $k=2, n=3$.

		$i=0$	$i=1$	$i=2$	$i=3$	
$p=0$	$B(i, 5)$	1	15	85	225	$(-1)^{3} 345$
$p=1$	$B(i, 4)$	1	10	35	50	0
$p=2$	$B(i, 3)$	1	6	11	6	0
$p=3$	$B(i, 2)$	1	3	2	0	0
$p=4$	$B(i, 1)$	1	1	0	0	2^{3}

In particular, when $p=n$,

$$
\sum_{i=0}^{n}(-1)^{i} A(k, k+n-i) B(i, k)=0
$$

or, setting $n-k$ for n

$$
\left.\begin{array}{l}
\sum_{i=0}^{n-k}(-1)^{i} A(k, n-i) B(i, k)=0 \tag{15}\\
\sum_{i=0}^{k}(-1)^{i} A(k, n-i) B(i, k)=0
\end{array}\right\} \text { provided } n>k=0,1,2,3 \ldots
$$

The two sums are equivalent since for $i>k, B(i, k)$ vanishes and for $i>n-k, A(k, n-i)$ vanishes.

From (15)

$$
A(k, n)=\sum_{i=1}^{k}(-1)^{1+i} A(k, n-i) B(i, k), \quad n>k=0,1,2, \ldots
$$

whence

$$
B(k, n)=\sum_{i=1}^{k}(-1)^{1+i} B(k-i, n) A(n, n+i), \quad n>k=0,1,2, \ldots
$$

Solving for the successive A^{\prime} 's and B 's, and for brevity writing A_{1}, A_{2} for $A(n, n+1), A(n, n+2)$ etc., and $\mathrm{B}_{1}, \mathrm{~B}_{2}$, for $B(1, k), B(2, k)$ etc.,

$$
\begin{array}{ll}
A(k, k) & =1 \\
A(k, k+1) & =B_{1} \\
A(k, k+2) & =B_{1}^{2}-B_{2} \\
A(k, k+3) & =B_{1}^{3}-2 B_{1} B_{2}+B_{3} \\
A(k, k+4) & =B_{1}^{4}-3 B_{1}^{2} B_{2}+2 B_{1} B_{3}-B_{4}+B_{2}^{2} \\
A(k, k+5) & =B_{1}^{5}-4 B_{1}^{3} B_{2}+3 B_{1}^{2} B_{3}-2 B_{1} B_{4}+B_{5}+3 B_{1} B_{2}^{2}-2 B_{2} B_{3} \\
\quad \text { etc., etc. } \\
B(0, n) & =1 \\
B(1, n) & =A_{1} \\
B(2, n) & =A_{1}^{2}-A_{2} \\
B(3, n) & =A_{1}^{3}-2 A_{1} A_{2}+A_{3}
\end{array}
$$

ete., etc., in exactly the same form as the B's.
$S(k, n)$ satisfies the linear difference equation of order k,

$$
\begin{align*}
& S(k, n+k)-B(1, k) S(k, n+k-1)+\ldots+(-1)^{i} B(i, k) S(k, n+k-i)+\ldots \tag{16}\\
& \ldots+(-1)^{k} B(k, k) S(k, n)=0
\end{align*}
$$

of which the characteristic equation has for roots $1,2,3 \ldots k$; and the conditions

$$
S(k, n)=0 ; n=1,2,3 \ldots k-1 ; S(k, k)=(-1)^{k} \mathrm{k}!
$$

are exactly sufficient to determine the constants. These two equations, therefore, completely characterize

$$
S(k, n)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} i^{n}
$$

In like manner, the difference equation

$$
\begin{gather*}
A(k, n+k)-B(1, k) A(k, n+k-1)+\ldots+(-1)^{i} B(i, k) A(k, n+k-i) \tag{17}\\
+\ldots+(-1)^{k} B(k, k) A(k, n)=0
\end{gather*}
$$

and the conditions

$$
A(k, n)=0, \quad n=1,2,3 \ldots k-1 ; A(k, k)=1
$$

completely characterize $A(k, n)=\frac{1}{S(k, k)} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} i^{n}$

$$
B(k, n) \text { satisfies the difference equation of order } 2 k+1 \text {, }
$$

$$
\begin{gather*}
B(k, n+2 k+1)-\binom{2 k+1}{1} B(k, n+2 k)+\ldots+(-1)^{i}\binom{2 k+1}{i} \tag{18}\\
B(k, n+2 k+1-i)+\ldots B(k, n)=0
\end{gather*}
$$

of which the characteristic equation is

$$
(x-1)^{2 k+1}=0
$$

Whence $B(k, n)$ is a polynomial of degree $2 k$ in n, but the $k+1$ obvious conditions

$$
B(k, n)=0, \quad n=0,1,2,3, \ldots \ldots-1, \quad B(k, k)=k^{\prime}
$$

are not sufficient to determine the constants. It is possible, however, by the successive application of the method of differences, since

$$
\triangle B(k, n)=(n+1) B(k-1, n)
$$

to determine these constants for any particular value of k. Thus:

$$
\begin{aligned}
& B(1, n)=\frac{1}{2}(n+1) n \\
& B(2, n)=\frac{1}{24}(n+1) n(n-1) \quad(3 n+2) \\
& B(3, n)=\frac{1}{48}(n+1)^{2} n^{2}(n-1) \quad(n-2) \\
& \text { etc., etc. }
\end{aligned}
$$

The properties of

$$
f(n, x, k)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(x+i)^{n}
$$

and an application of $\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \frac{1}{x+i}$ in the theory or gamma functions suggests the generalization:

$$
\begin{gather*}
f(t, x, k, n)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} i^{n}(x+i)^{t} \tag{1}\\
k, n=0,1,2,3 \ldots ; t=0, \pm 1, \pm 2, \ldots \ldots
\end{gather*}
$$

Whence

$$
\begin{array}{rlrl}
f(0, x, k, n)= & S(k, n) & k, n=0,1,2, \ldots \ldots \\
f(t, x, 0, n) & =x^{l} & \text { when } n=0 \\
& =0 & & \text { when } n>0 \\
f(t, x, 1, n) & =x^{t}-(x+1)^{t} & & \text { when } n=0 \\
& =-(x+1)^{t} & & \text { when } n>0
\end{array}
$$

When $t<0$, this function has poles at $x=-1,-2, \ldots \ldots$, $\ldots-k$, and also when $n+t<0$, at $x=0$.

$$
\text { Since } f(t, x, k, n)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} i^{n}(x+i)^{t-m}(x+i)^{m}
$$

we have the recursion formula

$$
\begin{align*}
& f(t, x, k, n)=\sum_{i=0}^{m}\binom{m}{i} x^{i} f(t-m, x, k, m+n-i) \tag{5}\\
& t=o, \pm 1, \pm 2, \ldots ; k, n=0,1,2,3, \ldots ; m=1,2,3, \ldots
\end{align*}
$$

If t is not negative, we have on setting t for m in (5)

$$
\begin{align*}
& \quad f(t, x, k, n)=\sum_{i=0}^{t}\binom{t}{i} x^{i} S(k, t+n-i) \quad k, n, t=0,1,2,3 \ldots \tag{6}\\
& \text { If } 0<n \overline{=} k \\
& \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} i^{(n)}(x+i)^{t}=(-1)^{n} k^{(n)} f(t, x+n, k-n, 0) \quad n=1,2,3 \ldots k
\end{align*}
$$

Wh ence, making use of (2) 3 ,
(7) $f(t, x, k, n)=\sum_{i=0}^{n}(-1)^{i} A(i, n) k^{(i)} f(t, x+i, k-i, 0) \quad n=1,2,3 \ldots k$.

In (5), setting $n=0, m=1$, and $t+1$ f or t :

$$
f(t+1, x, k, 0)=f(t, x, k, 1)+x f(t, x, k, 0)
$$

but by (7)

$$
f(t, x, k, 1)=-k f(t, x+1, k-1,0)
$$

Therefore,
(S) $\quad x f(t, x, k, 0)=f(t+1, x, k, 0)+k f(t, x+1, k-1,0)$. $k=1,2,3 \ldots$
In (5) setting $t=0$:

$$
\begin{gather*}
\sum_{i=0}^{m}\binom{m}{i} x^{i} f(-m, x, k, n+m-i)=S(k, n) \tag{9}\\
k, n=0,1,2, \ldots \ldots ; \quad m=1,2,3, \ldots \ldots
\end{gather*}
$$

Now $S(k, n)$ vanishes if $k>n$; therefore $f(-m, x, k, n)$ satisfies the linear homo geneous difference equation of order m :

$$
\begin{array}{r}
\sum_{i=0}^{m}\binom{m}{i} x^{i} f(-m, x, k, n+m-i)=0 . \tag{10}\\
k>n=0,1,2 \ldots \quad m=1,2,3, \ldots
\end{array}
$$

of which the characteristic equation is

$$
(r+x)^{m}=0
$$

whence the complete solution is

$$
\begin{align*}
& f(-m, x, k, n)=\left(c_{0}+c_{1} n+\ldots+c_{m-1} n^{m-1}\right)(-x)^{n} \tag{11}\\
& m=1,2,3 \ldots ; n=0,1,2, \ldots k-1 ; \text { not for } n>k
\end{align*}
$$

however, the equation (10) itself will give $f(-m, x, k, n)$ for

$$
n=k, k+1, \ldots \ldots k+m-1 .
$$

For $m=1$, we have

$$
f(-1, x, k, n)=c_{0}(-x)^{n} \quad n=0,1,2,3,
$$

and setting $n=0$, we determire

$$
c_{0}=f(-1, x, k, 0) .
$$

setting $t=-1$ in ${ }^{\prime}(8)$

$$
\begin{aligned}
f(-1, x, k, 0) & =\frac{1}{x}[S(k, 0)+k f(-1, x+1, k-1,0)] \\
& =\frac{1}{x} \text { when } k=0 \\
& =\frac{k}{x} f(-1, x+1, k-1,0) \quad k=1,2,3
\end{aligned}
$$

whence by repetition, and noting (3)

$$
f(-1, x, k, 0)=\frac{k!}{x(x+1)(x+2) \ldots .(x+k)} *
$$

and

$$
f(-1, x, k, n)=\frac{(-x)^{n} k!}{x(x+1) \ldots \ldots \ldots \ldots(x+k)} \quad n=0,1,2,3 \ldots k-1
$$

therefore, since by (10), $f(-1, x, k, k)=-x f(-1, x, k, k-1)$,

$$
\begin{equation*}
f(-1, x, k, n)=\frac{(-x)^{n} k!}{x(x+1) \ldots \ldots(x+k)} \quad n=0,1,2,3 \ldots k \text {, but not } n>k . \tag{12}
\end{equation*}
$$

Example:

$$
\begin{array}{rlrl}
x(x+1)(x+2)(x+3)(x+4) \sum_{i=0}^{4}(-1)^{i}\binom{4}{i} \frac{i^{n}}{x+i} & =24 & \text { when } n & =0 \\
& =-24 x & n & =1 \\
& =24 x^{2} & n & =2 \\
& =-24 x^{3} & n & =3 \\
& =24 x^{4} & n & =4 \\
\text { but } & =240 x^{4} & +840 x^{3}+1200 x^{2}+576 x, n & =5
\end{array}
$$

To find the value of $f(-1, x, k, n)$ for $n>k$, set $m=1$ in (9) and multiply through by

$$
(x+1)(x+2) \ldots(x+k) / S(k, k)=\sum_{i=0}^{k} B(i, k) x^{k-i} / S(k, k)
$$

and set

$$
\begin{aligned}
& g(-1, x, k, n) \text { for } f(-1, x, k, n) \sum_{i=0}^{k} B(i, k) x^{k-i} / S(k, k): \\
& g(-1, x, k, n+1)=A(k, n) \sum_{i=0}^{k} B(i, k) x^{k-i}-x g(-1, x, k, n) \\
& \quad k, n=0,1,2, \ldots \ldots .
\end{aligned}
$$

Setting $n=k, k+1$, we verify that

$$
\begin{equation*}
g(-1, x, k, k+n)=\sum_{j=1}^{n}(-1)^{j-1} A(k, k+n-j) \sum_{i=j}^{k} B(i, k) x^{k+j-i-1} \tag{13}
\end{equation*}
$$

holds for $n=1, n=2$; and a complete induction shows, on taking account of (14) $\S 3,(p=n)$, that it holds for all positive integral values of n. On

[^4]
448

changing the order of summation and replacing $g(-1, x, k, n)$ by its value, we have

$$
\begin{equation*}
f(-1, x, k, n)=\frac{\sum_{j=1}^{k} x^{j} \sum_{i=1}^{j}(-1)^{i-1} B(k-j+i, k) S(k, n-i)}{x(x+1)(x+2) \cdots(x+k)}, \tag{14}
\end{equation*}
$$

the numerator being a polynomial arranged according to ascending powers of x; on arranging this in descending powers of x, taking account of (14) §3.

$$
\begin{align*}
& f(-1, x, k, n)= \frac{\sum_{j=0}^{k-1} x^{k-j} \sum_{i=0}^{j}(-1)^{i} B(j-i, k) S(k, n+i)}{x(x+1)(x+2) \cdots(x+k)} \tag{15}\\
& n>k=0,1,2,3 \ldots
\end{align*}
$$

It is obvious that (14) does not hold for $n \overline{\overline{<}} k$, since in that case $S(k, n-i)$ vanishes, $i=1,2, \ldots . . n$; on the other hand, noting that $B(k, n)$ and $S(k, n)$ both vanish if $k>n$ and taking account of (15), §3, it results that in the numerator on the right side of (15), when $n \overline{<} k$, the coefficient of every power of x vanishes except that of x^{n} and this turns out to be

$$
(-1)^{k-n} B(0, k) S(k, k)=(-1)^{n} k!\text { which agrees with (12). }
$$

Therefore,

$$
\begin{equation*}
\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \frac{i^{n}}{x+i}=\frac{\sum_{j=0}^{k-1} x^{k-j} \sum_{i=0}^{j}(-1)^{i} B(j-i, k) S(k, n+i)}{x(x+1)(x+2) \ldots(x+k)}, \tag{16}
\end{equation*}
$$

but for the case where $n \overline{\overline{<}} k$, (12) is simpler.
Setting $m=2$ in (11)

$$
\begin{equation*}
f(-2, x, k, n)=\left(c_{0}+c_{1} n\right)(-x)^{n} \quad n=0,1,2, \ldots \ldots-1 \tag{17}
\end{equation*}
$$

Put $n=0, n=1$, and determine

$$
\begin{aligned}
c_{0} & =f(-2, x, k, 0) \\
c_{1} & =-\frac{1}{x} f(-2, x, k, 1)-\mathrm{f}(-2, x, k, 0), \quad \text { which by }(7) \\
& =\frac{k}{x} f(-2, x+1, k-1,0)-f(-2, x, k, 0)
\end{aligned}
$$

In (S) set $t=-2, k=1$

$$
x f(-2, x, 1,0)=f(-1, x, 1,0)+f(-2, x+1,0,0)
$$

whence by (12) and (3)

$$
\begin{aligned}
f(-2, x, 1,0) & =\frac{1}{x^{2}(x+1)}+\frac{1}{x(x+1)^{2}} \\
& =\frac{1!}{x^{2}(x+1)^{2}} \sum_{i=0}^{1}(1+i) B(1-i, 1) x^{i}
\end{aligned}
$$

Again, setting $k=2$ in (8)

$$
\begin{aligned}
f(-2, x, 2,0) & =\frac{1}{x} f(-2, x, 1,0)+\frac{2}{x} f(-2, x+1,1,0) \\
& =\frac{2!}{x^{2}(x+1)^{2}(x+2)^{2}} \sum_{i=0}^{2}(1+i) B(2-i, 2) x^{i}
\end{aligned}
$$

Assume

$$
\begin{equation*}
f(-2, x, k, 0)=\frac{k^{\prime}}{x^{2}(x+1)^{2} \ldots(x+k)^{2}} \sum_{i=0}^{k}(1+i) B(k-i, k) x^{i} \tag{18}
\end{equation*}
$$

and a complete induction, on taking account of (11) $\$ 3$, shows that this holds for all positive integral ralues of k.

Therefore:

$$
\begin{aligned}
c_{0} & =\frac{k!}{x^{2}(x+1)^{2} \ldots(c+k)^{2}} \sum_{i=0}^{k}(1+i) B(k-i, \mathrm{k}) x^{i} \\
-c_{1} & =\frac{k!}{x^{2}(x+1)^{2} \ldots(x+k)^{2}} \sum_{i=0}^{k} B(k-i, k) x^{i}
\end{aligned}
$$

and

$$
\begin{align*}
& f(-2, x, k, n)=\frac{(-x)^{\prime \prime} k!}{x^{2}(x+1)^{2} \ldots(x+k)^{2}} \sum_{i=0}^{k}(1+i-n) B(k-i, k) x^{i} \tag{19}\\
& k=0,1,2 \ldots ; n=1,2,3 \ldots k-1
\end{align*}
$$

On computing, by means of (10), the values of $f(-2, x, k, k)$ and $f(-2, x, k, k+1)$, we verify that (19) holds for $n=1,2,3 \ldots k+1$ but not for $n>k+1$,

Therefore,
(20) $\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \frac{i^{n}}{(x+i)^{2}}=\frac{(-x)^{n} k!}{x^{2}(x+1)^{2} \cdots(x+k)^{2}} \sum_{i=0}^{k}(1+i-n) B(k-i, k) x^{i}$

$$
k=0,1,2, \ldots ; n=0,1,2 \ldots, \ldots k+1 ; \text { not } n>k+1
$$

29-4966

The corresponding results for $n=k+2, k+3$, etc., may be found by putting these values successively for n in

$$
\begin{equation*}
f(-2, x, k, n+2)=S(k, n)-2 x f(-2, x, k, n+1)-x^{2} f(-2, x, k, n) \tag{21}
\end{equation*}
$$

which results from setting $m=2$ in (9). The general result may be put into the form
(22)

$$
f(-2, x, k, n)=\frac{\sum_{j=0}^{2 k-2} x^{2 k-j} \sum_{i=0}^{k-1} D(i, j, k) S(k-i, n)}{x^{2}(x+1)^{2} \ldots \ldots(x+k)^{2}} ; \quad k, n=1,2,3 \ldots
$$

in which the coefficients D, are independent of n :

$$
\begin{aligned}
D(i, 0, k) & =1 \quad \text { when } i=0 \\
& =0 \quad i=1,2,3 \ldots \\
D(0, j, k) & =\sum_{t=0}^{j} B(t, k-1) B(j-t, k-1) \quad j=1,2,3 \ldots
\end{aligned}
$$

but I have not been able to determine a general formula for $D(i, j, k)$ by means of which to calculate the coefficients of $f(-2, x, k, p), p>k+1$, without first calculating successivoly those for $n=k+2, k+3, \ldots$.

By making use of (10) §2, (21) may be reduced to
with which compare (16)

Example:

$$
\begin{gathered}
x^{2}(x+1)^{2}(x+2)^{2}(x+3)^{2}(x+4)^{2} \sum_{i=0}^{4}(-1)^{i}\binom{4}{i} \frac{i^{n}}{(x+i)^{2}}=S(4, n) x^{8}+ \\
{[12 S(4, n)+8 S(3, n)] x^{7}+} \\
{[5 S S(4, n)+76 S(3, n)+36 S(2, n)] x^{5}+} \\
{[144 S(4, n)+272 S(3, n)+2 S S S(2, n)+96 S(1, n)] x^{5}+} \\
{[193 S(4, n)+460 S(3, n)+780 S(2, n)+720 S(1, n)] x^{4}+} \\
{[132 S(4, n)+368 S(3, n)+840 S(2, n)+1680 S(1, n)] x^{3}+} \\
{[36 S(4, n)+112 S(3, n)+312 S(2, n)+1200 S(1, n)] x^{2}} \\
n=1,2,3 \ldots \ldots
\end{gathered}
$$

also:

$$
\begin{aligned}
& =S(4, n) x^{8}+[20 S(4, n)-2 S(4, n+1)] x^{7}+ \\
& {[170 S(4, n)-40 S(4, n+1)+35 S(4, n+2)] x^{\dot{j}}+} \\
& {[800 S(4, n)-340 S(4, n+1)+60 S(4, n+2)-4 S(4, n+3)] x^{5}+} \\
& {[2153 S(4, n)-1350 S(4, n+1)+335 S(4, n+2)-30 S(4, n+3)] x^{4}+} \\
& {[3020 S(4, n)-2402 S(4, n+1)+700 S(4, n+2)-70 S(4, n+3)] x^{3}+} \\
& {[1660 S(4, n)-1510 S(4, n+1)+476 S(4, n+2)-50 S(4, n+3)] x^{2}} \\
& n=1,2,3 \ldots \ldots .
\end{aligned}
$$

These results are consistent with (20) for $n=1,2,3,4,5$ and for $n=6$ give

$$
\begin{gathered}
1560 x^{8}+14400 x^{7}+51672 x^{6}+59520 x^{5}+100320 x^{4}+57600 x^{3} \\
+13824 x^{2} .
\end{gathered}
$$

Purdue University.

[^0]: *See Chrystal : Algebra I, p. 81.
 **See Chrystal: Algebra II, Chaps. NXIII, XXVII. Hagen: Synopsis der hoeheren Mathematik, p. 64: Paseal: Repertorium der hocheren Mathematik I, Kap. II, Sec. 1.
 -2 - 4966

[^1]: *Chrystal: Algebra II, Ses.9, p. 183, gives the proof of a slightly less general theorem.
 Cauchy: Exercices de mathematiques, 1826, I, p. 49 (23), obtains as a by-product the second conclusion of the theorem for the case $d=-1$, and remarks that it is well known.

[^2]: *See, for example, Cajori's Theory of Equations, pn. 85-85.
 \dagger Stern, Crelle's Journal, Vol. St, pp. 216-218.

[^3]: **Prestet, Elements de Mathematique, p. 178.

[^4]: *See Chrystal: Algebra II, Ex, 26, p. 20.

