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Some Properties of Binomial Coefficients.

A. M. Kenyon.

The binominal coefficients of the expansion

, ,
a- (k) k . (k) ft—l . fft] k—2 2 . . (ftl k

(x + y) =
[oj

x + [i}
x y+ {2\

x y + + [k\y

were known to possess a simple recursion formula

(1) + fc+ ll

In + lj ' [n + lj
k, n = 0, 1, 2, 3

by means of which Pascal's Triangle*

n = n = 1 n = 2 « = 3 . n = 4 etc.

ifc = 1

k = 1 1 1

k = 2 1 2 1

k = 3 1 3 3 1

ft = 4 1 4 6 4 1

etc. — — —
!

— —

could be built up, before Newton showed that they are functions of ft and n:

ft] ft(ft-l) . . . (k-n + 1)

ft = 0, 1
:
2

(2

1

-, »-l, 2, 3,

re =

A great number of relations involving binomial coefficients have been

discovered**; some of the most useful of these are

(3) nf*l-* r

*-J ;

k
=

k
-\

k - V
\; [*l

= 0if*>ft.

•See Chrystal : Algebra I, p. 81.

**See Chrystal : Algebra IT, Chaps. XXIII, XXVII. Hagen : Synopsis der hoeheren

Mathematik, p. 64; Pascal: Repertorium der hoeheren Mathematik I, Kap. II, Sec. I.

28—4966
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From (1) and (3) it follows that satisfies the linear difference equation

in + l)/(n+ 1) + (n-k)f(n) =

It is well known that the sum of the coefficients (x + y) is 2 and that

the sum of the odd numbered coefficients is equal to the sum of the even num-

bered ones; the following are perhaps not so well known:

(4) If, beginning with the second, the coefficients of (x — y)" be multiplied

by c", (2c)", (3c)", (ftc) respectively; c being arbitrarily chosen dif-

ferent from zero, the sum of the products will vanish for n = 1, 2, 3,

ft — 1 but not for n > k, e. g.

k = 8 —8, 28, —56, 70, —56, 28, —8, 1

c = 2 2
n

,
4", 6", 8", 10", 12", 14", 16

n

The sum of the products vanishes for n = 1, 2 7; but not for

n > 7; for n = 8 it is 10,321,920.

(5) If the first k coefficients of (x — y) be multiplied term by term,

with k
n

,
(ft — 1)", (ft — 2)", I", (n, ft = 1, 2, 3, ) the sum

of the products will be

(—l)*
+n

if n ~< k and (ft + 1)! -1 if n = ft + 1;

in particular

,fc fft+11 ,, u k fft+ 1] , .j fft+ 2] t_i fft+ 11 _
* — («— 1)

I 1
,

+ (A — 2) i 2 !— + (—1)
I

jfe
— X J

~ X

e. g. take ft = 5.

1, —6, 15, —20, 15,

-n ,n r,n n -.n0,4, 6
,

2 , 1
,

The sum of the products is +1, — 1, +1, —1, +1, 719, for n = 1, 2, 3, 4, 5,

6, respectively.

Both (4) and (5) are special cases of

(6) If the coefficients of (x — y)
',

(ft = 1, 2, 3, ...) be multiplied term by

term by the nth powers (n = 0, 1, 2, . . .) of the terms of any arithmetic pro-

gression with common difference ^0, the sum of the products will vanish

if n<k; will be (

—

d) (ft/) if n = ft; and if n = ft + 1 will be the product of this

last result and the sum of the terms of the arithmetic progression.

. g. take ft = 6, d = —1, a. p., 4, 3, 2, etc.

1, —6, 15, —20, 15, —6, 1

4", 3", 2", 1", 0", (-1)" (-2)"
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The sum of the products vanishes for n = 1, 2, 3, 4, 5, but not for n>5;

for n = 6, it is (—l)
6

(6!) = 720; and for n = 7, it is

720(4 + 3 + 2 + 1 + — 1 — 2) = 5040.

The third conclusion of (6) shows that if

(I) a + (a + d) + (a + 2d) + + (a + M)

and

(II) (J)
a* -

[J]
(a + tf)

fc + g) (« + 2d)
k - 4- (_i)

fc

[*] (a + M)*

be multiplied term by term and the (k + 1) products be added, the result will

be the same as though (II) be multiplied through by the terms of (I) in suc-

cession and the (k + l) 2 products be added; e.g. take k = 4, a = 1, d — 2

(I) 1 3 5
, 7 9

(II) • l'l 4
,

-4' 3 4
,

6'5 4
,

-4'7 4
, 1 9 4

1 — 972 + 18750 - 67228 + 5904J = 9600

l'l 4 —4'3 4 6'5 4 —4'7 4 19 4

1 1 - 324 3750 - 9604 6561 384

3 3 - 972 11250 —28812 19683 1152

5 5 —1620 18750 —48020 32805 192C

7 7 —2268 26250 —67228 45927 2688

9 9 —2916 33750 —86436 59049 3456

25 —8100 +93750 —240100 + 164025 9600

§2.

The properties noted above, and many others, can be made to depend

upon those of the sum

(1) S(k, n) =Z (—I]

!=

k) .n

It is readily shown that

(2) S(k, n) vanishes for k>n

(3) S(k, n) = —k i
\

n
- Z !l S(k — 1, i— 1)

i=k [
'

= - ~ i;!ij s(k-i,i-i)

k, n = 0, 1, 2, 3, . .

k, n =0, 1, 2, 3,
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whence S(k, n) is divisible by k! and in fact S(n, n) = (

—

\)
n
n! Also, since

S{1, n)<0, it follows that for fixed k, S(k, n) preserves a constant sign (or

vanishes) for all values of n; and this sign is the same as that of (—1) .

These numbers possess a recursion formula

(4) S{k, n) = k[S{k, n— 1) — S(k — 1, n — 1)] n, k = 0, 1, 2, . . . .

by means of which may be constructed,

A TABLE OF VALUES OF S(k, n)

fc = Jb=l k = 2 k = 3 k = 4 k = 5 k = Q k = 7 k = 8

n = 1

71= 1 —

1

n = 2 —1 2

n = 3 —

1

6 —6

n = 4 —

1

14 —36 24

n = 5 —

1

30 —150 240 —120

n = 6 —

1

62 —540 1560 —1800 720

n = 7 —

1

126 —1806 8400 —16800 15120 —5040

71 = 8 254 —5796 40824 —126000 191520 —141120 40320

Subtract any entry from the one on its right, multiply by the value of k above the latter.

(5)

(6)

(7)

(8)

2 S(k, n) = (-1)"

v Sjk,n) = Q
k = i

k

2 S(k, n) = 1 + cos n%
k= 2

n = 2, 3, 4, . . .

V
^J

1

]
S(Jb, »)-(* + 1)2 ?).50b,t)

i= A

2 ["j S(fc, i) = Sik, n) - S(k + 1, n)

S(k,k+ 1) =
\

k
2

1

)
S(k,k)

Setting n = k 4- 1 in (7) we obtain

(9)

and similarly we can express S(k, k + 2), £(&, fc + 3), etc. in terms of S(k, k).

From (4)

Sik, n) = Sik + 1, n) — =-^ S(* + 1, n + 1) *, n = 0, 1, 2, 3, .

k + 1
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By applying this m times, we obtain
m

(10) S(k, n) = 2 (— l)
1'

Hi S(k + m, n + i)

i=0

k, n = 0,1,2, •; m = 1, 2, 3,

where Hj is the sum of the products of the fractions l/(&+ 1), l/(k +2), l/{k + 3),

l/(k + to), taken i at a time; //(, = 1.

The proof of (6) §1 is as follows. If the first term of the arithmetic

progression is zero,

(—1)*(*] (dt)
B = d

n
S(k,n)

k

k
and this vanishes if n<£; is (—d) (k!) if n = k; and is

(—d)
k

(k!)[d + 2d + 3d + + kd] if n = k + 1.

If the first term of the arithmetic progression is a =•= 0,

2(-l)* ft] (a + dif = d
n 2 (-I)

1'

fj]
(x + i)»

i=o v ; 1=0

where x = a/d == 0.

If we use the notation

/(», x, k) = 2 (-1)' fjl & + o'

expand (x + i)" by the binomial formula and reverse the order of summation,

we obtain

(11) f(n,x,k) = 2 fyl x
11-' S(k,i)

Therefore

/(n, x, k,) = when ra<&, since all the summands vanish

= S(k, k) when n = k

^ x
n~{

S(k, i) whenn>k

In particular, when n = k + 1

/(* + 1, x, A) = (x + | ) (jfc + l)S(k, k) and on putting a/d for x,

'l

t+
'/(* + 1, .r, A;) = d

k
S(k, k)[a + (a + d) + (a + 2d) + + (a + kd)]

and from these follow the three conclusions* of (6) §1.

"Chrystal: Algebra II, Se . 9, p. 183, gives the proof of a slightly less general theorem.

Cauchy: Exerc-ices de mathematiques, 1826, I, p. 49 (23), obtains as a by-product the second

conclusion of the theorem for the case d = — 1, and remarks that it is well known.
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§3.

In finding the sum of certain series by the method of differences** it

is convenient to express positive integral powers of x in terms of the poly-

nomials

(1) x
(n} = x(x — 1) (x— 2) (x — n + 1) n = 1, 2, 3, ... .

,r

(n) = 1

If we set

(2) x
11 = A(o, n)xW+ A(l, n)x

{V'+ + A(k, n)x
(k)+ + A(n,n) x

{n)

it is easily shown that

(3) A(k, n) = S(k, n)/S{k, k)

whence

(4) A(k, n), k, n = 0, 1, 2, 3, vanishes if n<k; is always positive if

n > k > 0; in particular A(n, n) = 1; and the following relations come from

those given in §2 for S(k, ri):

(5) A (k, n) = X \jZ i)
A (k— 1, i— 1) = i 2 (,- ! jj

il (k— 1, i— 1)

The recursion formula

(6) A (k, n) = k A (k, n— i) + A (A- — 1, n — 1)

by which may be constructed

A TABLE OF VALTJF S OF A (k\ n)

k = k= l 'k = 2 k = d &=4 k = 5 k = Q k = 7 &=8

n = 1

n = 1

n = 2 1

n = 3 3 1

n = 4 7 6 1

7! = 5 15 25 10 1

w = 6 31 90 65 15 1

» = 7 63 301 350 140 21 1

n = 8 127 966 1701 1050 266 28 1

To any entry add the product of the one on its right and the value of k above the latter.

"See for example Boole's Finite Differences, Chap. IV.
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(7) 2
[!j]

A(k,i) =il(A; + l,n + l)

(8) 2 A(k, n) S(k — 1, k — 1) =
fc=l

Inversely, since

.T

(r'+1) = X(X— 1) (X 2) (a; — n )

re>£ = 0, 1, 2, .

n = 2, 3, 4, .

re = 0, 1, 2, ... .

if we set

4- (—if B(k, n)x
n~k+(9) 2

r"+ 1( = x[B(o, n)x
n — S(l, «)/

l+ .

+ (—1)" B(n, re)]

it is evident that B(o, n) = 1, n = 0, 1, 2 B(k, n) = the sum of the

products of the numbers 1, 2, 3, n. taken k at a time; in particular

B(k, k) = k! = (—1) S{k, k) and B(k, n) = if k>n. For convenience define

B(p, n) = 0, if p is a negative integer.

If we multiply both sides of

B(l,n— l)x
n 2 + + (—1)" 'B(n l,n— 1)]

n—

i

z
(M) =i[B(o,b-1K
by x — n, and equate the coefficients of x" ", we obtain the recursion formula

(10) B(k, n) = B(k, n— 1) + re £(A~ — 1, n — 1)

by means of which may be constructed

A TABLE OF VALUES OF B (k, n)

£=0 k = l k = 2 k = 3 & = 4 k = 5 k = 6 k = 7 k=8

n = 1

n = 1 1 1

re = 2 1 3 2

n = 3 1 6 11 6

n = 4 1 10 35 50 24

re = 5 1 15 85 225 274 120

re = 6 1 21 175 735 1624 1764 720

re = 7 1 28 322 1960 6769 13132 13068 5040

re = 8 1 36 546 4536 22449 67284 118124 109584 40320

Multiply any entry by the number (n+1) of the next row, and add to the entry on its right,

n-l-i-

(11) B(k,k+n) = 2 \l\ B(k + re—i, k + n — 1) k, re = 0, 1, 2, 3.

i=k
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The equation

5(0, n) x
n — 5(1, n) x"

l + . . . . + (—1)" B(n, n) =

k = 1, 2, 3

has 1, 2, 3, n-, for roots. If we set

Sk = V + 2
K + 3* + + n

and solve Newton's formulae* we obtain

Si 1

S 2 & 2

Oj >J2 Ol O

B(Jfc,Jb) B(k,n) = Oj O3 0-2 Ol

*Sfc 'Sfjfc— i 'Sfc—2 *5a— 3

This determinant vanishes when k > n.

Inversely,

I 5(l,n) 5(0,n)

2B(2,n) B(l,n) B{0,n)

3B(3,n) B(2,n) B{l,n) .

S,

S,

k,n = 1, 2, 3.

JfcB(ft,n) B(k—l,n) B(k—2,n) B(l,n)

k, n = 1, 2, 3 (even if k > n)

These sums of the powers of the first n natural numbers are connected

by the following relations, in which l{k/2) signifies the integral part of k/2:

Kk 2)

V I * I o _ +-/-1 o *
-"

2i + lJ "2A—l—2i— T- ^i
i= *

v
2

2k + 1 - 2i {k} „ _f9ri . n o*-ie*

whence
k

; =
—- c,- • Soi—i= where c,= —-

—

:
— when i is even

. n
l

(
l

) M ^ - l+i1
—(2n+l) when i is odd

*See, for example, Cajori's Theory of Equations, pp. 85-S6.

tStern, Crelle's Journal, Vol. 84, pp. 216-218.
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Also
k

2 P
+ 1

) Si= **(n + l)
fc+1 -l

i=0 ^ j

Relations between the A's and the B's:

c
m = 2 A(i, to) x

{i)
to = 1,2, 3

i— 1

zW = 2 (—l)
j
S(i, i— l)^'

-
-7

i = 1, 2, 3,

Therefore

m i—

1

x
m = 2 A(i, to) 2 (—1)^0', i— 1) x

i_i

the coefficient of x" on the right is

m—k

2 (—1)' A (A + i, m) B(i, Jfc + i— 1)

t=0

and this must vanish A: = 1, 2, 3, to—1, and be equal to 1, for k = m.

Whence, setting re for to — A,

v f r* = o, i, 2, . .

.

2 (—1) A(k+i, k+n) B(i,k+i—l) = 0, \
i=o in = 1, 2, 3, . . .

or, setting i for A + i, and re for to,

(12) 2 (—1)* A(t» 5(i—A, i—1) = 0.
|

A = 0, 1, 2, re—

1

re = 1, 2, 3,

Similarly, starting from

m—

1

X = Z (—1) B{%, TO—1) X
1=0

we obtain

(13) 2 (—1)* A (A, A+re—i) B(i, k+n—1) = 0,

=
°'

J"'

*' '

'

i=0 (re = 1, 2, 3, . .

This relation may be generalized as follows:

Set
n

C(k,n,p) = 2 (—1)*' A(k, k+n—i) B(i, k+n—p)
i=0

**Prestet, Elements de Mathcmatique, p. 178.
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then directly and by (13)

(a) C(k,o,p) = 1 p = 0, 1, 2,
A- = 0, 1, 2,

C(ay«,1) =0 n = 1, 2, 3, ... .

making use of (10) we obtain

(b) C{k,n,p) = C(k,n,p—1) + (k+n—p—1) C(k,n—l,p—l)

The left side vanishes when p = I; therefore

C(k,n,0) = —(k+n) C(k,n—-1,0)

By repeating this (n—1) times and noting that C(k, 0,0) = 1. we obtain

k = 0. 1, 2,
(c) C(fc,n,0) = (—1)"(*+1) (fc+2) .... (t+n)

Setting p = 2. 3. 4 il, in (b), we find

(d)

n = 1,2, 3,

C{k,n,p) =

= A-

r'

for p = 1, 2, 3. .

when p = 7! + 1

Therefore for all values of k = 0, 1, 2, ; and ra = 1, 2, 3.

(14) 2 (—l)
1'

A(fr, k+n—i) B(i,k+n—p) = (—l)
B
(fc+lj (k+2) .... (it+n)

when p =

= when p = 1. 2. 3 .

= k" when p = n+1

Example illustrating (14) for k = 2, n = 3.

i = j=l 7 = 2 i= 3

A(2,5-i) 15 —

7

3 —1 sums of products

p = B(i,5) 1 15 85 225 (—1)
3 34'5

p = l B(i,A) 1 10 35 50

p = 2 B(i,S) 1 6 11 6

p = 3 B{i,2) 1 3 2

p = 4 B{i,\) 1 1 2 3

In particular, when p = n.

2. (—\)
1

A(k, k+n—i) B{i, k) =
i=0
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or, setting n—k for n

n—k

(15) 2 (—lfAQc, n—i) B{%, k) =_„1

k

2 (—I)*A(*, n—i) B(i, k) =
i=0

^ provided n>A; = 0, 1, 2, 3.

The two sums are equivalent since for i>k, B(i, k) vanishes and for

i>n—k, A(k, n—i) vanishes.

From (15)

_ yA(k,n) = Z (—iy""A(k, n—i) B{i, k), n>k = 0, 1, 2,
{=1

whence

B(k,n) = 2 (—l)
1+i B(k—i, n) A(n, n+i), n>k = 0, 1, 2, . . .

Solving for the successive A's and B's, and for brevity writing Ai, A 2 for

A(n,n+1), A(n,n+2) etc., and B,, B 2 , for 5(1,k), B(2,k) etc.,

A (k,k) = 1

A(k,k+l) = B,

A(k,k+2) = Bi — Bo

A(k,k+3) = B\ —2B 1 Bn + B 3

A(k,k+4) = B\ — 3B\b 2 + 2B XBZ
— B, + b\

A(k,k+5) = B\ — 4B\B 2 + w\B i— 2B xB i + B i +W,B\—2B 2B Z

etc., etc.

B(0,n)

B(l,n)

B(2,n)

B(S,n)

etc., etc., in exactly the same form as the B's.

= 1

= A x

= A\ — A 2

= A\ — 2A,A 2 + A 3

S(k,n) satisfies the linear difference equation of order k,

(16) S(k,n+k) — B(l,k) S(k,n+k—l) + . . . + (—1)* B{i,k) S(k,n+k—i)+ . . .

. . .+ (—l)
k
B(k,k) S(k,n) =

of which the characteristic equation has for roots 1, 2, 3 ... . k; and the

conditions

S(k, n) = 0; n = 1, 2, 3. . . .k—l; S(k, k) = (—l)
h
k!
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are exactly sufficient to determine the constants. These two equations,

therefore, completely characterize

S(k,n) = 2 (-1)*
[J]

i
n

i=o * ;

In like manner, the difference equation

(17) A(k,n+k) — B(l,k) A(k,n+k— 1) + + (—l)
1

'

B(i,k) A(k,n+k—i)

+ .... + (—l)
k
B(k,k) A(k,n) =

and the conditions

A(k, n) = 0, n = 1, 2, 3 k—V, A(k, k) = 1

completely characterize A (k,n) =
^ 2 (— l)

4

•] i
n

B(k,n) satisfies the difference equation of order 2k + 1,

(2k+ l)
(18) B(k,n + 2k + l)— {^i

1

)
B(k,n + 2k) + + (-1)

{

B(k, n+2k+l—i) + — B(k, n) =

of which the characteristic equation is

(x — l)
2k+1 =

Whence B(k, n) is a polynomial of degree 2k in n, but the A" + 1 obvious

conditions

B(k, n) = 0, n = 0, 1, 2, 3, k— 1, B(k, k) = k'

are not sufficient to determine the constants. It is possible, however, by

the successive application of the method of differences, since

A B(k, n) = (n + 1) B(k— 1, n)

to determine these constants for any particular value of A".

Thus:

B{\,n) = \ (n+l)n

B{2,n) = ^ (n+l)n(n—1) (3n+2)

B(3,n) = ^ (n+l)V(n—1) (n—2)

etc., etc.
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§4.

The properties of

f(n,x,k) = 2 (-1)
1'

[*] (x+i)
n

1=0

(k) 1

i=
and an application of —, (—l)

1

• —: in the theory oi gamma functions
x + i

suggests the generalization:

(1) f(.t,x,k,n) = 2 (-1)
1'

[J]
i
n
{x+i)

1

k,n = 0, 1, 2, 3 ; f = 0, ±1, ±2,

Whence

(2) f(0,x,k,n) = S(k,n) k,n = 0, 1, 2,

(3) f(t,x,0,n) = x when n =

= when n >

(4) /(i,x,l,ra) = x — (x+1)' when n =
= — (z+1) when?? >

When i < 0, this fimction has poles at x = — 1, —2,
—k, and

also when n + t < 0, at x = 0.

Since f(t,x,k,n) = 2, (—1)
|

-j i (x+i) (ar+i)

we have the recursion formula

1-0 ^

(5) f(t,x,k,n) =2 • z/U—m,x,k,7n-\-n—i)

i = ^
j

f = o, ± 1, ± 2, . . . . ; k,n = 0, 1, 2, 3, . . . . ; m = 1, 2, 3, ... .

If t is not negative, we have on setting t for m in (5)

( . .

(6) f(t,x,k,n) = X
J- |

a;

1' S(£,i+n—i) fc,n,i = 0, 1, 2, 3 . . .

i=o lM

If < n^ k

2 (—1)*
fj]

i
(n)

(x+i)
( = (_i)VB)

/(*,*+«,*-», 0) .n = 1, 2, 3 A
i= ^

J

Wh ence, making use of (2) §3,

(7) f{t,x,k,n) = 2 (—if A(i,n) k
U)

f(t,x+i,k—i,0) n = 1, 2, 3 . . . . k.

i=0

In (5), setting n = 0, m = 1, and t+1 for /:

f(t+l,x,k,0) =f(t,x,k,l) +xf(t,x
>
k,0)
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but by (7)

f(t,x,k,l) = —kf(t,x+l,k—l,0)

Therefore,

(8) xf(t,x,k,Q) = f(t+l,x,k,Q) + kf(t,x+l,k—l,0), k = 1, 2. 3 . .

In (5) setting t = 0:

m

(9) 2 r-l x
l

f(—m,x,k,n+m—i) = S(k,n)

k,n = 0, 1, 2, ; m = 1, 2, 3,

Now S(k,n) vanishes if & > n; therefore /(

—

m,x,k,n) satisfies the linear homo

geneous difference equation of order m:

m

(10) 2 7 x
l

f(—m,x,k,n+m—i) = 0.

k > n = 0, 1, 2 . . . >» = 1, 2, 3, . . .

of which the characteristic equation is

(r + x)
m =

whence the complete solution is

(11) j{—m,x,k,n) = (c + Cin + + cm- X
n
m~

) (—xf

m = 1, 2, 3 . . . . ; n = 0, 1.2 fc—1; not for n~>k;

however, the equation (10) itself will give/(

—

m,x,k,n) for

n = k, fc+1, &+m— 1.

For ??i = 1, we have

/(—l,x,k,n) = Co (—x) n n = 0, 1, 2, 3, A-.

and setting » = 0, we determine

Co =/(— l,.r,A-,0).

setting t = —1 in '(8)

K—l,x,k,Q) =
\

[S{k,0) + kK—l,x+l,k—1,0)]

= — when £ =
:r

= - /(—l,x+l,k—1,0) fc = 1, 2, 3 . . .
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whence by repetition, and noting (3)

k!
f(r-l,x,k,0) =

x(x + l)(x + 2)....(x + k)

and

(—r) n k 1

f(—l,x,k,n) = -.
,
; '

-. - n = 0, 1, 2, 3 . . . . k—1J
'

'

x(x + l) (x + k) ' ' '

therefore, since by (10), /(

—

l,x,k,k) = —xf(—\,x,k,k—1),

(12) f(—l,x,k,n) = ;.
;

,
—— n = 0, 1, 2, 3 , . k, but not n>k.

x{x + l) {x + k)

Example:

x{x+l) (a+2) (x+3) (i+4) 2 (—1)2 (-D*
8=0

(41 in

UJ x + i

24 when n =

= —24a; n = 1

= 24a; 2 n = 2

= —24a; 3 n = 3

= 24a; 4 n = 4

but = 240a; 4 + 840a: 3 + 1200a- 2 + 576a;, n = 5

To find the value of /(

—

l,x,k,n) for n > &, set m = 1 in (9) and multiply

through by
k

(x+l)(x+2) .... (x+k)/S(k,k) = 2 B{i,k)x°~^/S(k,k)
i=0

and set

k

g(—l,x,k,n) for f{—l,x,k,7i)^B{i,k)x
k~H

/S{k,k):

i=0
k

g(—l,a;,&,7i+l) = A(k,n) 2, B(i,k)x
~~

l— xg(—l,x,k,n)

2 =

k,n = 0, 1, 2,

Setting n = k, k-\-l, we verify that

n k

(13) gr(—l,aj,A,*+n) = ^ (—l)
j_1

A(ft,A+n—j) 2 B(i,jfc) x*
+i~i_1

;'=1 i=j

holds for n = 1, n = 2; and a complete induction shows, on taking account

of (14) §3, (p = n), that it holds for all positive integral values of n. On

•See Chrystal: Algebra II, Ex. 26, p. 20.



448

changing the order of summation and replacing g(
—l,x,k,n) by its value,

we have
k j

2 x; 2 (—1)
J_1 B(k—j+i,k) S(k,n—i)

.

(14) /(—l,x,k,n) = j=1 i=1

x(x+l) (x+2) (x+k)

n > k = 0, 1, 2

the numerator being a polynomial arranged according to ascending powers

of x; on arranging this in descending powers of x, taking account of (14) §3.

(15) f(—l,x,k,n)

k—l j

2 x
h~j 2 (—1)* B(j—i,k) S(k,n+i)

x(x+l) (x+2) (x+k)

n > k = 0, 1, 2, 3

It is obvious that (14) does not hold for n < k, since in that case

S(k,n—i) vanishes, i = 1, 2, n; on the other hand, noting that B(k,n)

and S(k,n) both vanish if k > n and taking account of (15), §3, it results that

in the numerator on the right side of (15), when n~<k, the coefficient of every

power of x vanishes except that of .t and this turns out to be

(_!)*-« B(0,k)S(k,k) = (—l)
n
k> which agrees with (12).

Therefore,
A—

1

j

k 1 x~] 2 (—1)* B(j—i,k) S(k,n+i

2 (—1)
y i i\» i

k
)

i>l _ i=o

x+ l x(x+l) (x+2) (x+k)

k,n = 1. 2, 3

but for the case where n ~< k, (12) is simpler.

Setting in = 2 in (11)

(17) f(—2,x,k,n) = (co + an) (—x)
n

n = 0, 1, 2, k—l.

Put n — 0, n = 1, and determine

Co = /(—2,x,k,0)

ci = — - /(—2,a;,jfc,l) — f(—2,x,k,0), which by (7)
x

= -/(—2,x+l,k—1,0) —/(—2,a;,A-,0)
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In (8) set t = —2, k = 1

x/(—2,x,l,0) =/(—1,3,1,0) +/(—2,z+l,0,0)

whence by '(12) and (3)

/(—2,x,l,0) = * + ^-^"2
.r-(.r + l) x(.r + l) 2

1! y
•r-U+ l) 2

Again, setting & = 2 in (8)

l

(1+0 5(1—1,-1) x*

f(—2,.r,2,0) = -/(—2,a;,l,0) + --/(—2,x+l,l,0)
.r x

= — ttt? 5T5 2 (1+i) 5(2—1,2) X
1
'

x 2(x+ l) 2
(.r + 2)- f=0

•

Assume

(18) f(-2,x,k,0) = ,. ...
A

, .., 1 (1+i) B(k-i,fc) x
!

x-(.r + l)- (x + k)- -=0

and a complete induction, on taking account of (11) §3, shows that this holds

for all positive integral values of k.

Therefore:

*/ i
Co = ^77 ,,,

: r-^ 2 (1+ i) B(fr—l,k) I*
.r

2 (x + l) 2 U+ £) 2
-=0

•

—ci = -^

—

ttt-^ 7

—r^ 2 B{k—i,k) x
l

* 2
v* + l) 2

(*+ *) 2

i=0

and

(19) f(-2,x,k,n) = ^ A~
X) " *"'

, lM , S (1+i-n) B(*-*,t) x
1

'

x-(x+ l) 2 (x+k) 2
-=0

A- = 0, 1, 2.. .; n = 1, 2, 3 k—1

On computing, by means of (10), the values of /(—2, x, k, k) and

/(—2, x, k ,k+ 1), we verify that (19) holds for n = 1, 2, 3 fc+1

but not for ra>ft+l,

Therefore,

^om 5" / i\i W *
M {-x)"k! V /i i

• \ n>/; -n *
(20) 2, (—1) •, — = — +-

—

'- —- Z (1+t

—

n) B(k—i,k)x

i=0 UJ (x+i)> x 2(x + l) 2 (x + k)- i=0
K

k = 0, 1, 2, ; n = 0, 1, 2, fc+1; not «>/.-+l

29—49GG
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The corresponding results for n = k + 2, k + 3, etc., may be found by

putting these values successively for n in

(21) /(—2,x,k,n+2) = S(k,n) — 2x/(—2,x,k,n+l) — x 2 /(—2,x,k,n)

which results from setting m = 2 in (9). The general result may be put

into the form
2/fc—

2

k— 1

Z x
2k~J X D(i,j,k) S(k—i,n)

(22) f(—2,x,k,n) = J^— —\ k,n = 1, 2, 3 . . .

x 2 (x + l) 2 (x+ k)-

in which the coefficients D, are independent of n:

D(i,0,k) = 1 when i =

= t = 1, 2, 3

)

D(0,j,k) = 2 B(t, k—l) B(j—t, k—1) j = 1, 2, 3 . . .

but I have not been able to determine a general formula for D(i,j,k) by means

of which to calculate the coefficients of /(

—

2,x,k,p), p>k-\-l, without first

calculating successively those for n = k+2, fc+3, p— 1.

By making use of (10) § 2, (21) may be reduced to

2k—2 A;—

1

2 x
2k~j 2 E(i,j,k) S{k,n+i)

(23) f(—2,x,k,n) = ^— -^^— —
; fc,n = 1, 2, 3 . . .

x 2 (x+l) 2 (x+ k)-

with which compare (16)

Example:
4

x 2 (x+l) 2 (x+2) 2 (x+3) 2 (x+4) 2 2 (-1)
1'

(f) 7
-£— = S(4,n) x 8 +

[12S(4,n) + SS(3,n)]x? +
[58 S(4,n) + 76 £(3,n) + 36 S(2,n)] x 5 +
[144 £(4,n) + 272 S{d,n) + 288 S(2,n) + 96 S(l,n)] x 5 +
[193 S(4,n) + 460 S(3,n) + 780 S(2,n) + 720 £(l,n)] x* +
[132 S(4,n) + 368 S(3,n) + 840 S(2,n) + 1680 S(l,n)] x 3 +
[36 S(4,n) + H2 £(3,n) + 312 £(2,w) + 1200 £(l,n)] x 2

n = 1, 2, 3
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also:

= S(A,n) x 8 + [20 £(4,n) — 2 £(4,n+l)] x 7 +
[170 S(4,n) — 40 S(4,n+1) + 35 S(4,n+2)] x s +
[800 <S(4,n) — 340 S(4,n+1) + 60 #(4,n+2) — 4 £(4,n+3)] a;

5 +
[2153 <S(4,n) — 1350 <S(4,n+l.) + 335 S(4,n+2) — 30 £(4,n+3)]x"+

[3020 S(4,n) — 2402 S(4,n+1) + 700 £(4,n+2) — 70 £(4,n+3)]x 3+
[1660 S(4:,n) — 1510 S(4,n+1) + 476 £(4,n+2) — 50 S(4,n+3)]x 2

n = 1, 2, 3

These results are consistent with (20) for n = 1, 2, 3, 4, 5 and for n = 6

give

1560 a;
8 4- 14400 x 7 + 51672 x 6 + 59520 x 5 + 100320 x 4 + 57600 x 3

+ 13824 x 2
.

Purdue University.




