Irrelevint Factors in Bitangentials of Plane Algebraic Curves.

By U. S. Hanna.

Three years ago I presented a paper to the mathematical section of the Academy dealing with the proof of a formula used by Mr. Heal in an article published in the Annals of Mathematies, vol. VI, page 64. This formula was used by Heal in freeing a bitangential of the plane quintic, which he had developed in a previous paper in the Annals, vol. V, page 33, from an irrelevant factor, the square of the hessian of the quintic. Since then I have continued the study of the subject and wish to present an interesting result in the light of Heal's work.

Taking the general equation in the symbolic notation

$$
\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)^{n}=a_{x^{n}} \equiv b_{x^{n}}=c_{x^{n}}^{n} \cdots=0, \ldots \ldots(1)
$$

for the n-ic and deriving the first polar, with respect to the $n-i c$, of any point y, we have

$$
\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)^{n-1}\left(a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}\right)=a_{x^{n-1}} a_{y}=0, \ldots .(2)
$$

Any point on the line through the points x and y may be represented by $\lambda \mathrm{x}+\mu \mathrm{y}$, where λ and μ have a fixed ratio for any particular point. If x be a point on the n-ic and y be a point on the tangent to the n-ic at the point x, then we have equations (1) and (2) satisfied by the points x and y respectively, and equation (2), as an equation in y, represents the tangent to the $n-i c$ at x. If, in addition to these conditions, the point $\lambda x+\mu y$ lie on the n-ic, we must have from (1)

$$
\left(a_{\lambda x+\mu y}\right)^{n}=\left(\lambda a_{x}+\mu a_{y}\right)^{n}=0
$$

from which, by virtue of (1) and (2), we get

$$
\begin{gathered}
n(n-1) a x^{n-2} a y^{2} \lambda^{n-2}+\frac{n(n-1)(n-2)}{3!} a x^{n-3} a y^{3} \lambda^{n-3} \mu+\cdots+ \\
n a x_{a y}^{n-1} \lambda \mu^{n-3}+a_{y} \mu^{n} \mu^{n-2}=0 \ldots \text { (3) }
\end{gathered}
$$

Equation (3) is an (n-2)-ic in λ and μ which gives the positions of the remaining $n-2$ intersections of the tangent to the $11-i c$ at x with the 1 -ic itself. In order that this tangent be a bitangent the discriminant of equation (3) must vanish. This discriminant is a function of x and y, and if y

[^0]can be expressed in terms of x, then the discriminant becomes a bitangential of the $\mathbf{n - i c}$. It has been shown by Jacobi and Clebsch that this is always possible.

We shall write equation (3) as

$$
\begin{gathered}
\mathrm{A}_{0} \lambda^{\mathrm{n}-2}+(\mathrm{n}-2) \mathrm{A}_{1} \lambda^{\mathrm{n}-3} \mu+\frac{(\mathrm{n}-2)(\mathrm{n}-3)}{2!} \mathrm{A}_{2} \lambda^{\mathrm{n}-4} \mu^{2}+\cdots+ \\
(\mathrm{n}-2) \mathrm{A}_{\mathrm{n}-3} \lambda \mu^{\mathrm{n}-3}+\mathrm{A}_{\mathrm{n}-2} \mu^{\mathrm{n}-2}=0, \ldots \text { (4) }
\end{gathered}
$$

where we have

$$
\begin{gathered}
A_{0}=\frac{n(n-1)}{1 \cdot 2} \mathbf{a}_{x^{n-2}} a_{y^{2}}, A_{1}=\frac{n(n-1)}{2 \cdot 3} \mathbf{a x}^{n-3} \mathbf{a}_{y^{3}}, \cdots \\
\mathrm{~A}_{\mathrm{r}}=\frac{\mathrm{n}(\mathrm{n}-1)}{(\mathrm{r}+1)(\mathrm{r}+2)} \mathbf{a}^{\mathrm{n}-\mathrm{r}-2} \mathbf{a}_{y^{r}+2} .
\end{gathered}
$$

If equation (4) is a quadratic, that is, if the n-ic is a quartic, the discriminant of (4) is

$$
-\frac{4}{A_{0}^{2}}\left(\mathrm{~A}_{0} \mathrm{~A}_{2}-\mathrm{A}_{1}{ }^{2}\right)=0
$$

and after y is expressed in terms of x there is no irrelevant factor.
If the n-ic be the quintic, the discriminant of (4) is

$$
-\frac{27}{\mathrm{~A}_{6}^{6}}\left(\mathrm{G}^{2}+4 \mathrm{H}^{3}\right)=\mathrm{O}
$$

where we put $H=A_{0} A_{2}-A_{1}^{2}$ and $G=A_{0}^{2} A_{3}-3 A_{0} A_{1} A_{2}+2 A_{1}^{3}$, and the y can easily be expressed in terms of x for the functions G and H, but the result contains the square of the hessian of the quintic as an irrelevant factor. This factor can be discarded without difficulty by putting

$$
G^{2}+4 H^{3}=A_{0}^{2}\left\{\left(A_{0} A_{3}-A_{1} A_{2}\right)^{2}-4\left(A_{0} A_{2}-A_{1}^{2}\right)\left(A_{1} A_{3}-A_{2}^{2}\right)\right\}
$$

and then expressing y in terms of x for each parenthesis separately.
If the n-ic be the sextic, the discriminant of (4) is

$$
\frac{256}{A_{0}^{6}}\left(\mathrm{I}^{3}-27 \mathrm{~J}^{2}\right)=\mathrm{O},
$$

where $I=A_{0} A_{4}-4 A_{1}, A_{3}+3 A_{2}^{2}$ and $A_{0}^{3} J=A_{0} H I-G^{2}-4 H^{3}$.
There is no difficulty in expressing y in terms of x for the function I, and therefore, by multiplying and dividing the discriminant by \mathbf{A}_{0}^{6}, we can immediately write a bitangential of the sextic by substituting the results obtained for the quartic and quintic in

$$
\frac{256}{A_{0}^{12}}\left\{A_{0}^{6} \mathrm{I}^{3}-27\left(\mathrm{~A}_{0} \mathrm{HI}-\mathrm{G}^{2}-4 \mathrm{H}^{3}\right)\right\}=0
$$

But this bitangential of the sextic contains the sixth power of the hessian of the sextic as an irrelevant factor. In order to free it from this factor, we put

$$
J=\left(A_{0} A_{2}-A_{1}^{2}\right) A_{4}-\left(A_{0} A_{3}-A_{1} A_{2}\right) A_{3}+\left(A_{1} A_{3}-A_{2}^{2}\right) A_{2}
$$ and then express y in terms of x for the function J. The work involved in this last step is very long and tedious. These results can be used in developing a bitangential of the septic, but two additional functions will have to be developed, the work in which is almost beyond the range of possibility.

[^0]: 6-A. of Science.

