Some Elementary Notes on Stem Analyses of White Oak.

Burr N. Prentice.

In the fall of 1915 l had the opportunity to gather some facts concerning the growth of White Oak (Quercus alba). The opportunity was in the form of a small logging operation which took place in a woodlot of mature White Oak belonging to Mr. George Justice, in Tippecanoe county, Indiana, about seven miles north of Lafayette. The woodlot is located on rolling to flat land only a short distance from the Wabash river. The soil is typical of that region, being a sandy loam underlain with gravel. The cutting was not a large one, only covering about thirty trees, but the majority of the trees were old and fully mature, so that a good idea of the life history and growth of White Oak on similar situations in Indiana could be ganied by a study of their stems.

Complete stem analyses of the trees were taken. These included the following measurements on each bole; the diameter at the stump, together with the distance from the center to each tenth ring, counting from the outside in, and similar measurements at each of the other crosscuts on the tree, thus getting the diameter of each section at any decade throughout the life of the tree. The diameter at breast height, i.e., four and one-half feet from the ground, was taken in each case. The following height measurements were also included; height of stump, length of each section above the stump, length of tip above the last section, and the length and width of crown. Careful record was kept of the number of rings in decades at each section since hy these are determined the various periods of growth.

From this data was worked out the mean annual volume growth of the a verage tree of the stand for the entire period of its life. The method outlined by Mlodjianski, as modified by Graves, was followed. This requires the construction of a height growth table showing the average time required for the trees to grow from the ground to the various crosscuts. The accompanying curve drawn from plotting height in feet against age in years shows how such a table was obtained. This height table is given as a part of table three.

154

The next step is the detemination of the average stmmp height. By areraging the heights of the stumps of the entire plot. this height was artormined as one and one-half feet.

Curve based on age and total beight of White Oak ((qurcu; alba), showing time required to grow to any specified height. Hased on mexturempht of thirty trees.

 - moothed ont any irregularites in growth at the stemp for the entire number
of trees measured. A simmar curve was drawn for each of the other crossruts above the stump. It has alreaty been noted that the average stump height was one and one-half feet. Therefore the curve for the top of the first twelve-foot log represents the diameter growth at a point thirteen and one-half feet above the ground. The same is, of course, true for the other curves as well.

These curves were then all transferred to one sheet in such a manner that the growth at the respective crosscuts was shown on the basis of total age, i.e., earh curve hegins as many vears to the right of the intersection of the two axes as it took the tree to grow to the height of the crosseut in question. These points are determined from the height growth table.

These curves represent the diamcter growth at their respective distances above the ground, on the hasis of total age (age at the ground), and not on the hasis of the age at the respective crosscuts. We are able to get from this series of curves, for any age, the average total height and the dimensions of the trees inside the bark at various points along the bole.

A diameter breast height curve was also constructed in the following manner. On the same sheet with the stump eurve a second curve was drawn, letting the ordinate represent diameter breast height ralues mstead of diamcter inside the hark at the stump. Since there were but a small number of trees, all of umformby large diameter, it was impossible, as yet, to contmue this curve into the early age of the trees. But when the curves for the other points on the hole were also transferred thus to a single sheet, the diameter hreast height height curre was prolonged ly a process of interpolation to the sounger ages of the treses.

Seros of curves based on age at the grounct and diameters at various cross cuts, showing time required for the tree to grow from the ground to any specified diameter at Variots points up the bole. Basud on the measurenent of llirty White Oak trees.

From this series of curves Table No. 1 was taken. The cubic contents (Table 2) of the average tree at ten year periods throughout its life, was computed according to the Schiffel formula, which is $(.16 \mathrm{~B}+.66 \mathrm{~b}) \mathrm{h}=\mathrm{V}$, in which B represents the area of cross section at breast height, b represents the area of cross section at mid-height, h represents the total height of the tree, and V represents the volume.

TABLE I.-Diameters at various points along the bole for every decade throughout the life of the tree; white oak.

Height of Section Above Ground, in Feet.	Age in Years.												
	10	20	30	40	50	60	70	80	90	100	110	120	130
	Diameter inside the bark, in inches.												
(Stump) $1 \frac{1}{2}$.	1.0	2.2	3.3	4.5	5.8	6.9	8.2	9.5	10.7	12.0	13.2	14.5	15.9
D.B.H. $4 \frac{1}{2}$.		1.0	20		4.3	5.4	6.5	7.5	8.6	9.8	10.9	12.2	13.4
$13 \frac{1}{2}$.			10	2.2	3.4	4.3	5.3	6.5	7.5	¢. 6	9.8	10.7	11.8
$21 \frac{1}{2}$.				. 9	2.0	3.0	4.2	53	6.3	7.4	8.5	9.6	10.6
$35 \frac{1}{2}$.					. 4	1.4		3.4	46	5.7	6.7	7.8	8.9
$41 \frac{1}{2}$.									3.3	4.3	5.3	6.4	7.5
										1.8	2.8	3.9	5.0

TABLE I-Continued.

Height of Section ove Ground, in Feet.	Age in Years.										
	140	150	160	170	180	190	200	210	220	230	240
	Diameter inside the bark, in inches.										
(Stump) $1 \frac{1}{2}$.	17.4	18.8	20.3	22.0	23.8	25.4	27.2	29.0	30.7	32.7	35.0
D.B.H. $4 \frac{1}{2}$.	14.6	16.0	17.4	18.7	20.2	21.5	23.0	24.5	26.0	27.6	29.3
$13 \frac{1}{2}$.	13.0	14.0	15.2	16.3	17.4	18.4	19.4	20.5	21.5	22.6	23.6
$21 \frac{1}{2}$.	11.7	12.8	13.9	15.0	16.0	17.1	18.2	19.3	20.3	21.4	22.6
$35 \frac{1}{2}$.	10.0	11.0	12.2	13.2	$1+2$	15.3	16.3	17.4	18.4	19.5	20.5
$41 \frac{1}{2}$	8.5	9.6	10.6	11.6	12.7	13.7	14.8	15.8	16.9	17.9	19.0
50.	6.0	7.2	8.3	9.3	10.3	11.4	12.4	13.4	14.5	15.6	16.6

TABLE II. -Total height and *eubic volume of white oak for each decade of the life ol the tree.

Age, Years.	Height, Feet.	Volume. Cu. Ft.	Age, Years.	Height. Feet.	Volume, Cu. Fit.
10.	10.0	103	130	61.6	29.691
20.	18.2	054	14)	632	36.846
30.	25.5	. 178	150	(i5. 0	15.330
40.	31 -	. $\mathrm{H6S}$	16i)	$66^{\text {c }} 5$	54.397
50.	374	1. 159	1711	(67.9)	63.962
60.	11 s	$2.5!311$	1510	(6) , 0	75.34 s
70.	456	4.33:3	190	70.0	87. 220
80.	192	(6. 41.4	200	710	160.678
90.	521	9 152	2111	71 ¢	115.85
100).	54.8	13 4ふ1	220	72.1	12.5076
110.	57.2	20×21	234	72.8	146.037
120 .	59 +	23.522	240 .	7311	15t. 155 s

[^0]TABLE III. Volume in board fret of Norchantable stem for even decades.

入ar. Y'ans.	Volume. IB. II	\tre. Voars.	Volume, 13. II.	Vgr. Vrars.	Volume. I3. II
71.	11.	136)	1711	190	533\%
Al.	15	1111	295	2.15	(i3:3
(1).	10	150	275	2111	72.5
1010.	(i.)	160	335	229	830
1111.	1011	1711	105)	230	!15\%
1213.	$141)$	1801	1615	$\because 10$	1.1015

11 must be remembered that these figures are based on trees growing forder an entite absence of management. Proper managereent should easily materially merease the rate of growth shown here. Even amoner these trees there were many that were above the arerage rate here given. A rarve (rawn for the maxmmo growth in diameter at the stump) showed the followEng comparison:

Ige at	Arorage	Maximmm	Age at	Averagu	Masimmı
Stump.	D. 1. B.	1. 1. B.	Stump.	D. I. B.	D. 1. B.
20	2.5	3.0	140	18.0	$\because 1.5$
40	5. 0	5.8	160	21.0	2.) 0
60	7.0	8.0	180	24.4	28.8
80	10.0	11.9	200	28.0	32.5
100	12.4	15.0	220	31.4	36.4
120	15.0	18.2	240	35.2	40.6

It will be notieed that there is a difference of approximately 20 per cent. in diameter for any given age, hetween the arorage maximum growth and the average growth. Allowing for a proportionate increase throughout the stem, this would give a maximum volume for tahle three as follows:

Age	Volume	Volume		Volume	
	B. 11.	Ige	B. 11 .	Age	B. M.
Years.	(Maxi-	Years.	(Maxi-	lears.	(Masi-
	m(m).		mum).		mum).
70	12	130	20.5	190	$6+2$
s0	18	140	270	200	750
90	48	1.0	3:30	210	870
100	78	160	402	220	996
110	120	170	486	230	1,146
120	168	150	55	240	1,314

This 20 per cent. increase could hardly be regarded as reliahle, how--ver. when applied to later life of the tree. Artificial plantations both at home and ahroad show that it is not at all out of proportion with what may be experted during the early life of well managed plantations.

A study of the rowns of this plot showed the average width of crown to be forty feet. This would allow in a fully stocked stand, about forty mature trees to the acre. During the extremely early years of the stand, an acre would bear upwards of one thousand trees. *Mr. Earl Frothingham, Forest Assistant in the Forest Service, shows that from observed plots an acre id able to support seven hambed amd twenty-fom oak trees to the age of forty-

[^1]five. Our analyses show that the trees in the present study did not attalu a diameter breast height of six inches until they were seventy years of age. If we allow approximately one-half of the seven hundred and twenty-four, or three hundred and fifty, to remain at the age of seventy, and reduce this number by a series of intermediate acceleration thinnings, to the final forty at the age of one hundred and fifty, we get the following result:

While the problem of reforestation with oak is somewhat more diffecult than that connered with coniferous plantations, nevertheless these figures look interesting, to say the least. It is true that there is little material that is actually merchantable that can be looked for under one hundred years. There are many poor plots of land, however, on nearly every farm in Indiana which at present detract from the value of the whole property. If these plots were planted with even so slow growing a tree as the white oak the result would be an increase in the value of the entire property many yours before the trees themselves actually attained merchantable size.

[^0]: * Volumes computed according to sichilfel: $V=(.16 i k$, fifib)h. whore,
 $V=V$ olumf.
 $13=$ IBaval area of crosis serotion ald foreazl heright
 $1)=$ Area of reposis seretion at midallo hoight
 $h_{1}=$ T'ofal luight of trer.

[^1]: by Earl II. Frothinglatm. Forest Assistant.

