Gamma Coefficients And Series.

I. The Coefficinnts.

1. The function.

$$
(a x b y)=(a x+b y+\cdots) \frac{\Gamma(x+y+\cdots)}{\Gamma(x+1) \Gamma(y+1)}
$$

will be called ${ }^{\prime}$ gamma caefficient of coördinates x, y, \cdots, and parameters a, b, \cdots, and a multinomial coefficient when each parameter is unity. We shall use Greek letters to denote coördinates taken from the series $0,1,2,3$,

At points of discontinuity, the sum of the coordinates is zero or a negrtive integer. These points are excluded in the following properties.
2. A gamma coefficient with a negative integral coürdinate is zero.
3. Zero coördinates and their parameters may be omitted, as (axbyco) $=$ (a. b by).
4. The gamma coefficient of "point "pon an axis rquals the parameter of that \quad rxis, as $(a x)=\pi$.
5. The gamma coefficient of any point is the stmm of the gamma coefficient of the preceding points (a preceding point being found by dminishing one coördinate by a unit). Let $\mathrm{E} \eta$ operate to diminish the n'th coördinate by a unit, then in symbols, *(Note)

$$
\left(a x b y y^{\circ}\right)=\left(E_{1}+E_{2}+\ldots\right)\left(a x b y y^{\circ}\right)
$$

This may be extended to the n 'th repetition of $E_{1}+E_{2}+\cdots=1$, where the E 's combine loy the laws of numbers.
6. The above property furnishes an immediate proof of the multinombat theorem. Thus let

$$
F n=\Sigma\left(1 \alpha 1 \beta^{\cdots}\right) p^{\alpha} q^{\beta \cdots}, \alpha+\beta+\cdots=n
$$

i. e. the summation extends to every point the sum of whose coördinates is n, there being a given number of variables $p, q, \quad{ }^{\prime}$, and corresponding integral coördinates α, β, \cdots. Applying art. 5 to the coefficients of $F n$, we find $F n=\left(p+q+^{\prime}\right) F(n-1)$, and since $F 1=p+q+^{\cdots}$, thercfore $F^{\prime} n=\left(p+q+{ }^{\prime}\right)^{\eta}$.
7. Zero parameter: and corresponding coördinates may be omitted, if the result be multiplied by the multinomial conefficient of the omitted coordinates rate one other, the sum, less I, of the retained coördinates, as,

$$
(0) x O y b z e w)=(b z c w)\left(1 x 1 y 1 w^{\circ}\right), w^{\prime}=z+w^{\prime}-1
$$

8. Equal parameters and their coördinates may be omitted, except one to

[^0]a coördinate the sum of the omitted coürdinates, if the result be multipliced by the multinomial coefficient of the omitted coördinates, as
$$
(a x a y b z)=\left(a x^{\prime} b z\right)(1 x 1 y), x^{\prime}=x+y .
$$
9. The coeffieient of a parameter of a gamma cocfficient is the multinoimal coefficient of the corresponding preceding point. In symbols,
$$
\left(a x b y y^{\cdots}\right)=\left(a E_{1}+b E_{2}+\cdots\right)\left(1 x+1 y^{\cdots}\right)
$$

II. (iamma Semen.

10. Let there be m variables, p_{1}, p_{2}, \cdots, of weights $1,2, \quad$, and m corresponding parameters, a_{1}, a_{2}, \cdots. The gammo serics of weight n is the sum of all terms in the variables of weight n, cach multiplied hy the gamma coefficient of its exponents and the corresponding parameters:

$$
\text { (a) } \quad(a p) n=\Sigma\left(a_{1} \alpha_{1} \|_{2} \alpha_{2} \cdots\right) p_{1}^{\alpha_{1} p_{2}} \alpha_{2} \cdots, \alpha_{1}+2 \alpha_{2}+\cdots=n \text {. }
$$

This series is not a function of an r 'th variable and parameter for $r>n$, since the simultaneous exponent and coördinate αr, is zero.

By applying art. 5 to the coofficients of ("p) n, we have,

$$
\text { (b) }(a p) n=p_{1}(a p)(n-1)+\ldots+p \eta-{ }_{1}(a p) 1+a_{\eta} p_{\eta}
$$

where, if $r>m, p_{r}=0$.
The last term $a_{\eta} p_{\eta}$, which cannot exist if $n>m$, is determined by the fact that it is given by the coördinate $\alpha_{\eta}=1$, and the other roördinates, zero.
11. The difference equation $10(b)$ has no solution exeept the gimma series, since all values of (n) n are determined from it by taking $n=1,2,3,{ }^{\circ}$. suceessively. It is an equation of permanent form only for $n>m$, when it is the general linear difference equation of n 'thorder with comstant coeflicients p_{1}, p_{2}, \cdots, whose general solution with m arbitarly constants is therefore foume in the form of a gamma series. The equation whose roots detormine its solution (in the ordinary theory of linear chfference equations) is,

$$
\text { (a). } x^{\mathrm{m}}=p_{1} x^{\mathrm{m}-1}+p_{2} x^{\mathrm{m}-2}+\cdots+p_{\mathrm{m}}
$$

Symmetrie functions F'r of the roots of this eguation will also satisfy the difference equation and ean therofore be expresseod as gamma series by certain values of the parameters.

Since the roots of (a) are constants, the parameters will in grencral be "ertain functions of the roots, but we propese here to determine the symmetric functions that may be expressed hy gamma series with prevemeters independent of the roots: and find two sets of such functions m in each set,
which can be linearly expressed in terms of each other, and either of these sets suffice to express in linear form all of the symmetric functions sought.
12. The parameter $a \eta$ of $(a p) n, n=1,2, \cdots, m$, is the coefficient of $p \eta$. Thus to determine the possible parameters of a given symmetric function, $F n$, we must take a_{η} as the value of $F n$ for the roots of the equation $x^{\eta}=1$, this being what 11 (a) becomes when we put $p_{\eta}=1$, and other p 's equal to zero. It remains to test the resulting equations,

$$
\mathrm{F} 1=\mathrm{a}_{1} \mathrm{p}_{1}, F^{\prime} 2=p_{1} F 1+a_{2} p_{2}, F 3=p_{1} F^{2} 2+p_{2} F 1+a_{3} p_{3}, \text { etc. }
$$

13. The sum of the n'th powers, s_{η}.

By art. 12, we find $a_{\eta}=n$, for the function s_{η}, and the difference equations are Newton's equations. Hence

$$
\mathrm{s}_{\eta}=\Sigma\left(1 \alpha_{1} \cdots \alpha_{\eta}\right) p_{1}{ }_{1}^{\alpha_{1}} \cdots p \eta^{\alpha} \eta, \alpha_{1}+\cdots+n \alpha_{\eta}=n
$$

This is Waring's formula for s_{η}.
14. The homogeneous products, π_{η}.

Here, $a \eta=1$, giving the correct difference equations,

$$
\pi_{1}=p_{1}, \pi_{2}=p_{1} \pi_{1}+p_{2}, \pi_{3}=p_{1} \pi_{2}+p_{2} \pi_{2}+p_{3}, \text { etc. }
$$

Hence, $\pi_{\eta}=(1 p) n, i$. e. the coefficient of a term is the multinomial coefficient of its exponents. Since the equations are symmetrical in $\pi,-p$, we have also, $p \eta=-(1[-\pi]) n$. These formulas seem to be new, as also those which follow.
15. The homogeneous products, k at a time, $\pi n k$.

Here a_{η} is a binomial coefficient of the n'th power, whose value is zero for $n<k$, and 1 for $n=k$, and,

$$
\pi_{n k}=(a p) n, a_{\eta}=(-1)^{k-1}(1 K 1 . n-k .)
$$

16. By applying art. 9 to the coefficients of $\left(a_{p}\right) n$, and substituting $\pi_{\eta}=(1 p) n$, we have

$$
\text { (a). } \quad(a p) n=a_{1} p_{1} \pi_{\eta-1}+a_{2} p_{2} \pi_{\eta-2}+\cdots+a_{\eta} p_{\eta}
$$

We have therefore,

	$p_{1} \pi_{\eta}-1$	$p_{2} \pi_{\eta-2}$	$p_{3} \pi_{\eta-3}$	$p_{4} \pi \eta-4$	$p_{5} \pi \eta-\varepsilon$,
${ }^{\pi} \eta=$	1	1	1	1	1
$\mathrm{s} \eta={ }^{\pi} \eta_{1}=$	1	2	3	4	5
$-{ }^{\pi} \eta_{2}=$		1	3	6	10
${ }^{\pi} \eta_{3}=$			1	4	10
$-{ }^{\pi} \eta_{4}=$				1	5
$\pi_{\eta_{j}}=$					1
etc.					

From the top line and the diagonal of units, we continue adding a number to the one above for the next number in the same line (a particutar case of art. 5). When $n>m$, the number of functions in each set is m.

The solution of these equations for the second set in terms of the first is found by interchanging corresponding functions, $\rho k \pi n-k$ and $\pi n k$.

Rose Polytechnic Institute.

[^0]: * (Note) Read n for η throughout this paper.

