Some Relations of Plane and Spheric Geometry.

> David A. Rothrock.

Our notions of plane analytic geometry date to the publication by Descartes of his philosophical work: "Discours de la méthorde . . . dans les sciences," 1637, which contained an appendix on "La Geometrie." In this work Descartes devised a method of expressing a plane locus by means of a relation between the distances of any point of the locus from two fixed lines. This discovery of Descartes led to the analytic geometry of the plane, and the extension to three dimensional space gave rise to geometry of space figures by the analytic method. A single equation, $\mathrm{f}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)=0$, bet ween two variables represents a plane curve; a single equation, $\mathrm{F}_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$, in three variables represents a surface in space; and two equations, $\mathrm{F}_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0, \mathrm{~F}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$, represent a curve in space.

In the Cartesian system of coördinates, a space curve is determined by the intersection of two surfaces. If we wish to investigate the curves upon a single surface, that is, if we wish to devise a geometry of a given surface. it may be possible to discover a system of coördinates upon the surface, such that any surfare-locus may be expressed by a single equation in terms of two coördinates, as in plane geometry. The sphere furnishes a simple example in which a locus upon its surface may be represented by a single equation connerting the coördinates of any point upon the locus.

Toward the end of the eighteenth century a fragmentary system of analytic geometry of loci upon the surface of the sphere was developed. This early work on Spheric Geometry seems to have originated with Euler ($1707-1783$), but many of the sperial cases of spherical loci were investigated by Euler's colleagues and assistants at St. Petershurg. In the present paper are enumerated a number of the early investigations on spherical lori, and a derivation of the equations of sphero-conies in modern notation. The correspondence of the spheric equations to the similar equations of plane analytios is shown.

Historical.

One of the first problems involving a locus upon a sphere to be solved by use of spherical coordinates was the following: Find the locus of the rertex of a spherical triangle haming a constant area and a fixed base. With the base $A B$ fixed, Fig. 1, and the area of the spherical triangle APB constant, the

locus of P was shown to be a small circle. This result was derived by Johann Lexell (1740-17s4), an astronomer at St. Petersburg, in 17sl. The problem was found to have been solved earlier, 177s, by Euler. ${ }^{1}$ The result is somertimes known as Lexell's theorem.

A serond spherisal loreus appeared as the solution of the problem: To find the locus of the vertex of a spherical triangle upon a fixced base, such that the sum of the tao rariable sides is a constaul. This problem defines a locus

$$
\text { Fis. } 2
$$

upon the sphere analogous to the ordinary definition of an ellipse in the plane. 'The loers of J ' is called the spherical Ellipse. 'The solution of this problem was found in 1785) hy Nicholaus Fuss (1755-1826), a native of Basel, and an assistant 10 Euler at Sit. Petershurg from 1773 until Eulor's death in $17 \mathrm{~s}: 3$.

Frederick Theodore Schubert, a Russian astronomer, a contemporary of Fuss, published solutions to a number of spherical loei, types of which

[^0]are shown in the following: Given a triangle with a fixed base, find the locus of the vertex P such that the variable sides, ρ, ρ^{\prime}, Fig. 2, satisfy:
\[

$$
\begin{aligned}
& \text { (1) } \sin \rho=\mathrm{k} \sin ^{\rho^{\prime}}, \\
& \text { (2) } \cos \rho=\mathrm{k} \cos ^{\circ} \rho^{\prime}, \\
& \text { (3) } \sin \frac{\rho}{2}=\mathrm{k} \sin _{2}^{\rho^{\prime}}, \\
& \text { (4) } \cos _{2}^{p}=\mathrm{k} \cos { }_{2}^{\rho^{\prime}} .
\end{aligned}
$$
\]

In C'relle's Journal. Vol. V1, 1830, pp. 244-254, Gudermam published an article "Ueber die analytische Spharik," which contains a rollertion of spherical loci connected with sphero-conics, for example, such as: (1) The locus of the foet of perpendiculars dravm from the focus of a spherical ellipse upon tangents to the spherical cllipse; (2) The locus of the intersction of perpendicular tangents to a spherical cllipse; and other problems similar to those of plane analytics. The notation employed by Cudermann is not fully explained, and is an adaptation from that used ly him in a private publication of his work "Grundriss der analytischen Spharik, 10 which the present writer does not have access.

Thomas Stephens Davies published, 1834, in the Transactions of the Royal Society of Edimburgh, Vol. XII, pp. 259-362, and pp. 379-428, two papers, entitled, "The Equations of Loci Traced upon the Surface of a Sphere." In these extensive papers the author uses a system of polar coördinates upon the sphere, and derives the equations of many interesting curves, the spherical ronics, rycloids, spirals, as well as many properties of these curves. The polar equations of Davies may he transformed into great-cirele coördinates, giving equations of spherical loci in a form similar to the Cartesian equations of corresponding lori in the plane.

Spherical Analytics.

A system of analytic geometry upon the sphere may lee derived in direet correspondence to that of the plane by a proper choice of axes of coördinates.

1. Coordinates. Let us select as axes two great circles $\mathrm{XX}^{\prime}, \mathrm{YY}^{\prime}$ perpendicular to each other at O, Fig. 3. The spherical coördinates of any point P are the intercepts, $\mathrm{OA}=\xi$ and $\mathrm{OB}=\eta$, cut off upon the axes by perpendiculars drawn from P. Let the length of the perpendiculars from P be $\mathrm{PB}=\xi^{\prime}$, and $\mathrm{PA}=\eta^{\prime}$.

From the right spherical triangles PBY and PAX we have the following fundamental relations:

$$
\text { (1) } \tan \xi=\frac{\tan \xi^{\prime}}{\sin B)^{\prime}}=\frac{\tan \xi^{\prime}}{\cos \eta}, \tan \eta=\frac{\tan \eta^{\prime}}{\sin \Lambda X}=\frac{\tan \eta^{\prime}}{\cos \xi}
$$

2. Équation of the špherir Line L. H in Torms of its Intererphs.

The are of at great eirele we will call a spheric stratht line. Lat the mterrepts be OL $=\alpha, O X=\beta$, and the angle OLA $=\phi$, Fig. B. Then from the right triangles MOL and PAL we hate

$$
\tan \varphi=\frac{\tan \beta}{\sin \alpha} \text {, and tan } \varphi=\frac{\tan \eta^{\prime}}{\sin . \ L}=\frac{\tan \eta^{\prime}}{\sin (\alpha-\xi)}
$$

Equating these values of tan φ, and sulastituting the value of tan η^{\prime} lrom (1),

$$
\frac{\tan \beta}{\sin \alpha}=\frac{\tan \eta \cos \xi}{\sin \alpha \cdot 0 \sin \xi-\cos \alpha \sin \xi}=\frac{\tan \eta}{\sin \alpha-\cos \alpha \tan \xi}
$$

Fxpressingeachfometion in terms of tangents and reducing, we find the equation of the pherice line in the interept form:
(2) $\frac{\text { tan } \xi}{\text { tall } \alpha}+\frac{1 \text { tan } \eta}{\text { tall } \beta}=1$.
(1) Special Crases. (a) Parallels to the axes. A shperic line parallel to the OY-axis passes through the pote of the axis OX. Hence for a parallel to the OY-axis $\beta=90^{\circ}$ and the equation of the line becomes

$$
\text { (3) } \tan \xi=\tan \alpha
$$

and for a parallel to the OX-axis, $\alpha=90^{\circ}$, and
(4) $\tan \xi=\tan \beta$
(b) A line through one point. If a line (2) is to pass through (ξ_{1}, η_{1}). we have

$$
\text { (5) } \frac{\tan \xi-\tan \xi_{1}}{\tan \alpha}+\frac{\tan \eta-\tan \eta_{1}}{\tan \beta}=0 \text {. }
$$

(c) A line through two points $\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)$, is given by

$$
\frac{\tan \xi-\tan \xi_{1}}{\tan \xi_{2}-\tan \xi_{1}}=\frac{\tan \eta-\tan \eta_{1}}{\tan \eta_{2}-\tan \eta_{1}}
$$

Conditions of perpendicularity, parallelism, angles of intersection of spheric straight lines may also be expressed, but will not be included here.
(2) Corrcspondence to plane geometry. The intercept form of the sphericstraight line is similar to the corresponding equation in plane geometry, and may be reduced to that form by letting the radius of the sphere increase without limit.
3. The Spheric Ellipse. Find the locus of the vertex P of a spherical triangle with fixed base $F F^{\prime}$, such that the sum of the sides is a constant. $\rho+\rho^{\prime}=2 \alpha$. Fig. 4.

This definition defines the Spherice Ellipse MGM[1(${ }^{1}$.
Take the origin at the center O of the base FF^{\prime}. Let $\mathrm{FF}^{\prime}=2 c, \rho+\rho^{\prime}$ $=2 \alpha, \mathrm{OM}=\alpha, \mathrm{OG}=\beta$. When P falls at $\mathrm{G}, \mathrm{FG}=\alpha=\mathrm{F}^{\prime} \mathrm{G}$.

Then from the right triangle FOG (hypotenuse not drawn), we have (1) $\operatorname{ros} \alpha=\operatorname{ros} \beta$ rose; and from PAX.
(2) tan $\eta^{\prime}=\cos \xi$ tan η.

From the right triangles $P^{\prime} A F$ and $P^{\prime} A F^{\prime}$, we have
(3) $\cos \rho=\cos \eta^{\prime} \cos (c-\xi) \cdot \cos \rho^{\prime}=\cos \eta^{\prime} \cdot(0)(\rho+\xi)$.

Adding equations (3) and using $\rho+\rho^{\prime}=2 \alpha$,
(4) $\operatorname{ros} \alpha \cos \frac{\rho-\rho^{\prime}}{2}=\cos \eta^{\prime} \operatorname{cose} \cos \xi$.
and subtracting (3).
(5) $\sin \alpha \sin \frac{\rho-\rho^{\prime}}{\underline{2}}=105 \eta^{\prime} \sin \alpha \sin \xi$

Ehiminating $\frac{\rho-\rho^{\prime}}{\underline{2}}$ and \cdot from (1). (4). (5) and reducing, we find the symmetrial equation of the spherio ellipse

$$
\frac{1 a n^{2} \xi}{\tan ^{2} \alpha}+\frac{\tan ^{2} \eta^{2}}{\tan n^{2} \beta}=1
$$

α, and β being the intererpts on the axes, OAI, and OG, respertively.
s゙pecial ('ases. (1) Lat $\alpha=\beta$, and wo have a circle

$$
\text { (A) } 1 a n^{2} \xi+\tan ^{2} \eta=\tan ^{2} \alpha \text {, }
$$

with renter at U athd radius α. With $\alpha=30^{\circ}$, his eirele hecomes the boundary of the hemisphere on which our geometry is forated, corresponding to the cirele with infinite radius in plane geometry.
(2) Let $\alpha=90^{\circ}$, and the ellipse becomes the two "prollel limes", tan ${ }^{2} \eta$ $=$ tann ${ }^{2} \beta$, passing through the poles of the (1 -axis.
(3) The equation of a rirele upon a sphere may be derived quite readils, but the resulting equation is somewhat unsymmetrical. Let ξ_{1}, η_{1}, be the
coördinates of the center, and let α he the radius. Then the equation may be derived from the fundamental equations

$$
\begin{aligned}
& \tan \eta_{1}^{\prime}=\cos \xi_{1} \tan \eta_{1}, \tan \xi_{1}^{\prime}=\cos \eta_{1} \tan \xi_{1}, \\
& \tan \eta^{\prime}=\cos \xi \tan \eta, \tan \xi^{\prime}=\cos \eta \tan \xi,
\end{aligned}
$$

and the polar equation

$$
\cos \alpha=\sin \eta_{1}^{\prime} \sin \eta^{\prime}+\cos \eta_{1}^{\prime} \cos \eta^{\prime} \cos \left(\xi-\xi_{1}\right),
$$

by the elimination of $\xi_{1}{ }^{\prime}, \eta_{1}{ }^{\prime}$ and $\xi^{\prime}, \eta^{\prime}$.
The resulting equation is

$$
\begin{aligned}
(\tan \xi & \left.-\tan \xi_{1}\right)^{2}+\left(\tan \eta-\tan \eta_{!}\right)^{2}+\left(\tan \xi \tan \eta_{1}-\tan \xi_{1} \tan \eta\right)^{2} \\
& =\tan ^{2} \alpha\left(1+\tan \xi \tan \xi_{1}+\tan \eta \tan \eta_{1}\right)^{2} .
\end{aligned}
$$

When $\xi_{1}=\eta_{i}=0$, this equation reduces to that given in (A) above.

4. The Spheric Hyperbola. This spherical curve may be defined as the locus of a point which moves so that the difference of its distances from two fixed points is constant, $\rho-\rho^{\prime}=2 \alpha$.

Using the notation of Fig. 4, but with $\rho-\rho^{\prime}=2 \alpha$, this definition leads to the equation

$$
\frac{\tan ^{2} \xi}{\tan ^{2} \alpha}-\frac{\tan ^{2} \eta}{\tan ^{2} \beta}=1
$$

which is the spheric hyperbola. The locus does not intersect the OY-axis; the conjugate spheric hyperhola may be defined by

$$
\frac{\tan ^{2} \xi}{\tan ^{2} \alpha}-\frac{\tan ^{2} \eta}{\tan ^{2} \beta}=-1
$$

and the spherif asymptoles to either by

$$
\frac{\tan \xi}{\tan \alpha}= \pm \frac{\tan \eta}{\tan \beta}
$$

-) The Spheric Parabola. A Spherie Parabola may be defined as the loens of a poinl mosing upon the surface of a splacere so as to be equally distant from a fixed print F and a fixed great circie ('M, Fig. 5.

From the definition $\mathrm{PR}=\mathrm{PF}$; let 0 hiseret H F. Them from Fig. is,
(1) tian $\eta^{\prime}=\cos \xi \tan \eta$,
(2) $\cos \mathrm{PH}=\sin \mathrm{PK}=\left(\cos \eta^{\prime} \sin \left(0+\frac{\xi}{\xi}\right)\right.$,
(3) $\cos \mathrm{PF}^{\prime}=\left(\cdot \mathrm{O} \eta^{\prime} \cos (\xi-(\cdot)\right.$.

Squarmg and arloling (2). (3)

$$
1=\cos ^{2} \eta^{\prime} \sin ^{-}\left(\xi+(\cdot)+(0) s^{2}(\xi-(\cdot))\right.
$$

or

$$
1+\tan ^{2} \eta^{\prime}=1+4 \sin \cdot \cdot \cdot 0 \cos \sin \xi \cdot 0 \cdot \varepsilon
$$

Sulsitituting from (1),

$$
\tan ^{2} \eta=2 \sin 2 \cdot \tan \xi
$$

whirh is the required equation.
(i. Correspondence to Plame Geometry. The above equations of the
 similatity to the corresponting equations in the plane. These equations may be rerluced to th a erquations in plano by aonsidering the radins of the sphere to inceresse without limit. This may br done by expressincthearesintermos of thereadins, and finding the limit of the funcetions in eatele equation as re *

For example, in the spherice ellipse.

$$
\text { (l) } \frac{\tan ^{2} \xi}{\tan ^{2} \alpha}+\frac{\tan ^{2} \eta}{\tan ^{2} \beta}=1
$$

 of radius r, we haterarrs (x, y), (a, h) delermined hy

$$
\xi=\frac{\mathrm{x}}{-, \eta}=\frac{\mathrm{y}}{\mathrm{r}}, \alpha=\frac{\mathrm{a}}{\mathrm{r}} \underset{\mathrm{r}}{-, \beta}=\frac{\mathrm{b}}{\mathrm{r}}
$$

Eflation (J) becomes

$$
\left.\frac{\tan ^{2}\left\{\begin{array}{c}
x \\
r
\end{array}\right)}{\tan ^{2}\left\{\begin{array}{c}
a \\
- \\
r
\end{array}\right\}} \tan ^{2}\left\{\begin{array}{l}
y \\
- \\
r
\end{array}\right\}+\frac{\tan ^{2}\left\{\begin{array}{l}
h \\
- \\
r
\end{array}\right\}}{\}}\right\}=1 .
$$

Expand the tangents into infinite series acoording to the law

$$
\tan Z=Z+\frac{Z^{3}}{3}+\frac{2 Z^{5}}{1.5}+\frac{17 Z \cdots{ }^{\prime} \cdot e^{3}}{315}+\cdots \text { exponent of } Z .
$$

and we find

$$
\begin{aligned}
& \left.\left\{\begin{array}{l}
x \\
r \\
r
\end{array} \frac{x^{3}}{3 r^{3}}\right)^{2} \quad\left\{\begin{array}{l}
y \\
r \\
r \\
3 r^{3}
\end{array}\right)^{r^{3}}+\ldots\right\}^{y} \\
& \left\{\bar{a}+\frac{a^{3}}{3 r^{3}} \cdots\right\}^{2} \quad\left\{\overline{\left(\frac{b}{r}+\frac{b^{3}}{3 r^{3}}\right.}+\cdots\right\}^{2}
\end{aligned}
$$

Dividing r^{2} from each fraction, and passing to the limit $r=2$, and we have the equation of an ellipse in the plane,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{h^{2}}=1
$$

Any equation in the "rectangular spherie" eoördinates will reduce, in the limit when the sphere is marle to increase infinitely, to the equation of a corresponding locus in the plane.

[^0]: ${ }^{1}$ Cantor, Vol. IV. p. 384, p. 416.

