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Some Relations of Plane and Spheric Geometry.

David A. Rothrock.

Our notions of plane anali/tic (jcoi)ielrij date to tlic })ul)lic'ationl>y Descartes

of his philosophical work: " Discourn de la methode . . . danslea sciences,"

1637, which contained an appendix on "La Geomeirie." In this work Des-

cartes devised a method of expressing a plane locus by means of a relation

between the distances of any point of the locus from two fixed lines. This

discovery of Descartes led to the analytic geometry of the plane, and the

extension to three dimensional space gave rise to geometrj^ of space figures

hy the analytic method. A single equation, f (x,y) = o, lietween two variables

represents a plane curve; a single equation, Fi (x,y,z) = o, in tliree variables

represents a surface in space; and two equations, Fi (x,y,z) = o, F^ (x,y,z) = o,

represent a curve in space.

In the Cartesian system of coordinates, a space curve is determined by

the intersection of two surfaces. If we wish to investigate the curves upon

a single surface, that is, if we wish to devise a geometry of a given surface,

it may be possible to discover a system of coordinates upon the surface,

such that an>- surface-locus may l)e expressed by a single equation in terms

of two coordinates, as in plane geometry. The sphere furnishes a simple

example in which a locus upon its surface may be represented by a single

equation connecting the coordinates of any point upon the locus.

Toward the end of the eighteenth century a fragmentary system of

analytic geometry of loci upon the surface of the sphere was developed.

This early work on Spheric Geoinelry seems to have originated with Euler

(1707-1783), l)ut many of the special cases of spherical loci were investigated

by Euler's colleagues and assistants at St. Petersburg. In the present papei-

are enumerated a number of the early investigations on sj^herical l(K-i, and a

deri\ation of the equations of sphero-eonics in modern notation. The

correspondence of the spheric equations to the similar equations of ])lane

analytics is shown.
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Historical.

One of the first problems involving a locus upon a sphere to be solved by

use of spherical coordinates was the following: Find the locus of the vertex

of a spherical triangle hanilg a constant area and a fixed base. With the base

AB fixed, Fig. 1, and the area of the spherical triangle APB constant, the

Fist

locus of P was shown to l)e a small circle. This nvsult was deriA'ed by Johann

Lexell (1740-1784), an astronomer at St. Petersburg, in 1781. The problem

was found to huxe been sohed earlier, 177S, by Kuler.' The result is some-

times known as Lexell 's theorem.

A second spherical locus appeared as the solution of the problem: To

find the locus of the vertex of a spherical triangle upon a fixed base, such that

the sum of the two variable sides is a constant. This ])r()l)lem defines a locus

upon the sphere analogous to the ordinary dclinitioii of an ellipse in llu-

plane. The locms of P is called the Spherical Ellipse. The solution of this

problem was found in 1785 by Nicholaus Fuss (1755-1826), a native of Basel,

and an assistant to Euler at St. Petersburg from 1773 until Euler's death

in 1783.

Frederick Theodore Schubert, a Russian astronomer, a contemporary

of Fuss, published solutions to a number of spherical loci, types of which

1 Cantor, Vol. IV. p. 384, p. 416.
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are shown in the following: Given a triangle with a fixed base, find the locus

of the vertex P such that the variable sides, p, p', Fig. 2, satisfy:

(1) sinp = k sinp',

(2) cosp = k cosp',

(3) sin f = k sin|

,

'

(4) cos^ = k cos ^ .

In Crelle's Journal, Vol. VI, 1S30, i)p. 244-254, Gudermann published an

article '"Uebcr die anaitjiinche Spharik," which contains a collection of spherical

loci connected with sphero-conics, for example, such as: (1) The locus of the

feci of perpendiculars drawn from ihe focus of a sphericrd ellipse upon tangenls

In the .spherical ellipse; (2) The locus of the intersection of pfrpevdicular tangents

to a .spherical ellipse; and other problems similar to thof-e of plane analytics.

The notation employed by Gudermann is not fully explained, and is an

adaptation from that used by him in a private publication of his work

"Grundriss der analytischen Spharik, to which the present writer does not

have access.

Thomas Stephens Davies published, 1S34, in the Transactions of the

Royal Society of Edinburgh, Vol. XII, pp. 259-362, and pp. 379-428, two

papers, entitled, ''The Equations of Loci Traced upon the Surface of a Sphere."

In .these extensive papers the author uses a system of polar coordinates

upon the sphere, and derives the equations of many interesting curves, the

spherical conies, cycloids, spirals, as well as many properties of these curves.

The polar equations of Davies may be transformed into great-circle co-

ordinates, giving equations of spherical loci in a form similar to the Cartesian

equations of cori'esponding loci in the plane.

Spherical Analytics.

A system of analytic geometry upon the sphere may be derived in direct

correspondence to that of the plane by a proper choice of axes of coordinates.

1. Coordinates. Let us select as axes two great circles XX ,
YY per-

pendicular to each other at 0, Fig. 3. The spherical coordinates of any

point P are the intercepts, OA = ^ and OB = v, cut off upon the axes by per-

pendiculars drawn from P. Let the length of the perpendiculars from P be

PB = ^', and PA = t?'.
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From the right si)lipric;il triaiififlt's PBY ;uid PAX we have tlie following

fundaiiicntal relations:

tan $' tan $' tan 77' tan i\

(1) tan ^ = =
, tan 77

sinBY cos 77 sinAX cos $

2. I'UiiKilioK (if the Spill ric Liiii LM in 'I'lriiis nf ils / nlrrci pis.

The arc of a great circle we will call a splin-ir slmiiihl line. Let llie inter-

cepts he OL = a, OM = /i, and the angle OI^.M = 0. Fig. ."]. Then I'roin th(>

right triangles MOL and PAL Ave have

tan li tan rj' tan rj'

tan <p = , and tan ^ = =
sin a sinAL sin(a — $)

E(£uuting these \alues of tan yr, and siil)stilu(ing the \alue of tan j;' from (1),

tan li tan -q cos $ I a 11 rj

sina sinacosj — cosasin^ sma — eosa tanf

Fxpressingeacli function in terms of tangents and reducing, \ve lind I he ('(jua-

tion of the spheric line in the intercept form:

tan I tan ri

(2) + = 1.

tan a tan /:(
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(1) Special Cases, (a) Parallels to the axes. A shperic line parallel to

the OY-axis passes through the pole of the axis OX. Hence for a parallel

to the OY-axis (3 = 90° and the equation of the line lieeomes

(3) tan ^ = tan a

and for a parallel to the OX-axis, a = 90°, and

(4) tan t = tan /3

(b) A line through one ])oint. If a line (2) is to pass through ( ^u Vi)'

we have

(5)

tan ^ — tan ^i tan r] — tan 7][

O.
tan a tan 13

(e) A line through two points ($i, 171), ($2, r?;.), is given bv

tan ^ — tan ^1 tan 77 — tan rji

Conditions of perpcndiciilarihj, parnllelis}n, (inglca of intersection of spheric

straight lines may also be expressed, but will not l)e included here.

(2) Correspondence to plane geometry. The intercept form of the spheric

straight line is similar to the corresponding equation in plane geometry,

and may be reduced to that form by letting the radius of the sphere increase

without limit.
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3. The Spheric Ellipse. Find the locus of the rcrte.r P of a spherical triangle

with fixed base FF', sitch that the sum of the sides is a conslant. p -\- p' = 2a.

Fig. 4.

This definition defines the Spheric Ellipse MGM^G^
Take the origin at the center O of the base FF'. Let FF' = 2c. p + p'

= 2a, OM = a, OG = 15. When P falls at G, FG = a = F'G.

Then from the right triangle FOG (hypotenuse not drawn), we have

(1) cosa = cos /i cose;

and from PAX,

(2) tan r?' = eos$ tan 77.

From the right ti'iangles PAP"' and PAF', we ha\'c

(3) cosp = cosrj' cos (c — ^), cosp' = costj'cos (c + $).

Adding equations (3) and using p + p' = 2a,

p — p'

(4) cosa cos = COS77' cose cos^.

2

and suhtrac^tiiig (3),

.
P " p'

, .

(o) suia sni = COS 7j suic sin $

p — P
Eliminating and <• froiii (1), (4), (5) and reducing, we find the

9

syinnicti'ica! equation of the splicric t'llij)se

tan-^ tan-?;

+ = 1,

tan^a tan^/S

a, and /3 being the intercepts on the axes, OM, and OG, respectively.

Special f'o.sr.s. (1) Let a = li, and Ave hav(> a circle

(A) )an-$ -f tan=77 = tan-'a,

with center at O and radius a. With a = 1)0^, this circle becomes the bound-

ary of the hemis])here on which our geometry' is located, corresponding to

the circle with infinite radius in plane geometry.

(2) Let a = 90°, and the ellipse becomes the two "parallel lines", tan^i;

= tan-/a, passing through the poles of the OY-axis.

(3) The equation of a circle upon a sphere may be derixcd (juite readily,

but the resulting equation is somewhat unsymmetrical. Let |i, tji, be the
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coordinates of the center, and let a be the radius. Then the equation may be

derived from the fundamental equations

tan Tji' = cos ^1 tan 771, tan ^/ = cos tji tan ^1,

tan t)' = cos I tan 7;, tan $' = cos rj tan $,

and the polar equation

cos a = sin Tji' sin -q' + cos r;/ cos 17' cos (t — $1),

by the elimination of ^1', r?/ and ^', 7;'.

The resulting equation is

(tan t— tan ^i)- + (tan ?;
— tan n{)-+ (tan t tan 771— tan $1 tan 77^-

= tan- a (1 + tan ^ tan ^1 + tan 77 tan 771)'-.

When ^1 = 77; = o, this equation reduces to that given in (A) above.

OQ.--f

S *

4. The Spheric Hyperbola. This spherical curve may be defined as the

locus of a point which moves so that the difference of its distances front two fixed

points is constant, p — p' = 2 a.

Using the notation of Fig. 4, but with p — p' = 2 a, this definition leads

to the equation

tan- ^

tan^ a.

tan- 77

tan- ti

= 1.

which is the spheric hyperbola. The locus does not intersect the OY-axis;

the conjugate spheric hyperbola may be defined by
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tan^ f tan- 77

= _ 1^

tan- a. tan- /3

and the splieric n^ymploles to either by

tan I tan 17

tan a tan fi

.'). The Spheric Parabola. A Spheric Parabola may ])e defined as the

lociiti of a point tnoring upon the surface of a sphere so as to he egually (listanl

from a fixed point F and a fixed great circle CM, Fig. 5.

From the definition PR = PF; let O bisect M F. Then from Fig. 5,

(1) tan 77' = cos ^ tan -q,

(2) cos PH = sin PR = cos tj' sin (c + t),

(3) cos PF = cos 77' cos (^ — c).

Squaniig and adding (2), (3)

1 = cos'-7j' sin- ( ^ + c) -\- cos- (t — c)^,

or

1 + tan-Tj' = 1+4 sine cose sin| cos^.

Substituting from (1),

tan'-7j = 2 sin2c tan^, '

which is the rc(iuired eciuation.

G. Correspondence to Plane Geometry. Tlie above equations of the

spheric straight line, ellipse, hyperbola, paralmla. and circle, show a marked

similarity to the corresponding equations in the plane. These equations may

be reduced to tl '• equations in piano by considering the radius of the sphere

to increase without limit. This may be done by expressing the ares in terms pf

the radius, and finding the limit ot the functions in each equation as r =^ °°.

For exami)!e, in the spheric ellipse,

lan-^ tan-7j

(1) + = 1,

tan-a Xnn-ii

let ( ^. 77), (a, ^i) bi' radian measure of arcs on a unit splicrc; then on a spliero

of radius ;•, we have arcs (x, y), (a, b) determined l)y

X ^- a
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+ -

JCxpand the tangents into inlinite series according to the hiw

Z3 2 Z 5 17 Z "7" exponent of Z,

tan Z = Z H h \

1

3 l.j 315

and we find

fx X' ^2 ^y y3 y.

\- +— ....
f

^ +— + ....
^

[r 3 r '

J
[r 3 r ^

= 1.

fa a' ]' fb b3 ]'-

i-+ .... \
\-+— + ....

I

[r 3r3
J

[r 3r3
J

Dividing /- from each fraction, and passing to the liniil r -- ', and we

have the equation of an elHiJse in tlie ])lane,

X- V-

— + — = 1.

a- b-

Any equation in the "rectanguhir spheric" cocirdinates Avill reduce, in tlie

limit when tlie sphere is made to increase infinitely, lo the equation of a

corresponding locus in the plane.




