Conjugate Functions and Canonical Transformations.

By Dayid A. Rothrock.

(Abstract.)
It is known that any function, $\phi(\mathrm{Z})$, of a complex variable, $\mathrm{Z}=\mathrm{x}+$ $i_{y} y$, may be separated into a real part $\phi_{1}\left(x, y\right.$ an imaginary part, $\left.i \phi_{2} \cdot x, y\right)$, and that φ_{1}, φ_{2} each satisfy Laplace's equation $\frac{\delta^{2} \phi}{\delta \mathbf{\Sigma}_{2}}+\frac{\delta^{2} \phi}{\delta y_{2}}=0 \% \mathrm{~A}$ very elegant geometric interpretation of these two functions ϕ_{1}, ϕ_{2} mar be had by equating each to a third variable $\zeta: \phi_{1}(x, y)=\zeta, \phi_{2}(x, y)=\zeta$ Each equation then represents a surface for any point of which Laplace's equation is true. By developing $==\phi_{1}(x, y)$ into a power series in the vicinity of any point x_{0}, y_{0}, and using the Laplace equation, we have the theorem: the projection of the section of a tangent plane to the sorface $\zeta=\phi_{1}(x, \Sigma)$ upon the x, y-plane is a curve having a double point at x_{0}, y_{0} with real, orthogonal tangents, and hence the surface is hyperbolic at every point.
$\zeta=\mathrm{k}$ gives lines of level on $\zeta=\phi_{1}(\mathrm{x}, \mathrm{y})$, while $\zeta=\mathrm{k}_{2}$ in $\zeta=\phi_{2}(\mathrm{x}, \mathrm{y})$ gives cylinders which intersect $\zeta=\phi_{1}(x, 5)$ in curces of quickest descent.

The second part of the paper deals with the linear fractional function $\mathrm{Z}_{1}=\frac{a \zeta+\beta}{\gamma \zeta+\delta}$ which has the fundamental invariant points f_{1}, f_{2} about which a canonical transformation may be constructed so that $\mathrm{Z}=\mathrm{o}$, when $\mathrm{Z}^{1}=f_{1} ; \mathrm{Z}=x, \mathrm{Z}=f_{2}$. This function is $\mathrm{Z}=\frac{\mathrm{Z}^{1}-\rho_{1}}{\mathrm{Z}^{1}-f_{2}}={ }_{a-\gamma f_{2}}^{a=\gamma f_{1}}\binom{\mathrm{Z}-\rho_{1}}{\mathrm{Z}-i_{2}}$. The modulus of $\frac{\mathrm{Z}-\rho_{1}}{\mathrm{Z}-\rho_{2}}$, and amplitude of $\begin{aligned} & \mathrm{Z}-\rho_{1} \\ & \mathrm{Z}-f_{2}\end{aligned}$, set, respectively, equal to constants give au elliptic system and an hyperbolic system of circles about and through the two points $\int_{1} \cdot f_{2}$. Now the transformation

$$
\mathrm{Z}=\frac{\mathrm{Z}^{1}-f_{1}}{\mathrm{Z}} \mathrm{Z}_{2}-f_{2}=\frac{a-\gamma f_{1}}{a-\gamma f_{2}}\left(\frac{\mathrm{Z}-f_{1}}{\mathrm{Z}-f_{2}}\right)
$$

sets up a motion about f_{1}, f_{2} which is determined by the modulus and the amplitude of $\frac{a-\gamma \digamma_{1}}{a-i \delta_{2}}$. If mod. ∓ 1 and amp $=0$, motion *Where $\frac{\delta^{2} \Phi}{\delta x^{2}}$ denotes the second p irtial of Φ with regard to x, and so for $\frac{\delta^{2} \Phi}{\delta y^{2}}$.
goes along the hyperbolic circles, the elliptic circles interchanging. If mod. $=1$, amp. ∓ 0, motion goes along elliptic circles, the hyperbolic system being invariant. If mod. ± 1, amp. ∓ 0, motion is along neither family but passes diagonally from curvilinear rectangle to curvilinear rectangle. These respective transformations may be named hyperbolic, elliptic, lorodromic. The circles about and through the fundamental poiuts are potential lines and lines of flow in the well known problem of electricity of equal source and sink.

Bloomington, Ind., Nov. 28, 1906

