Notes on the Artificial Fertilization of the Eggs of the (ommon Clam, (I'emus Mercemaria).

H. E. Enders and II, D. Aller.

In view of the economic importance of the common clam we endeavored to artificially fertilize its ergs during the past smmmer* at the United States Fisheries Laboratory, at beaufort, North Varolina. Many clams were full of eggs or contained ilctive spermatuzoa when we first examined them in July. This condition prevalled till the 12th of September, but early in November of this year the spermatozoa were not atetive.

Several times during July and August we fertilized the eggs by the addition of active spermatozoa from several males and observed the maturation of the egg, the segmentation, and the early trochophore stage. In one instance (Ausust 1 , 1 bum) the development contiuned to the young veliger stage.

The female sexmal element is a pear-shaped cell in which a large merminal resicle is found. Many of the cells become spherital fifteen or twenty minutes after the addition of alctive spermatozoa. The eggs then show no further evidence of being fertilized till two hours after the addition of sprem, when the first polar body is cast off and this followed by the second at an interval of twenty or thirty minutes. Thirty minutes later the eqg passes into the two-celled stage by a holoblastic and unequal division. The next division oremrs in a bane at right angles to the first and this is followed by division in a pane at risht angles to the other two.

The cells divide symchyonously up to the thirty-two-celled stage but we were unable to determine whether this continues beyond this stage.

The percentage of egrs that could be fertilized was small during July ; it increased during Jusnst and September, but during November the spermatozoa wrere not active and the eses eould not be fertilized.

While we have not reildhed a definite conclusion regarding the breeding habits of the rommon rhan we feel that these data are themselves shgificant.

[^0]
Determination of all Surfaces for Which, When Lines of Curvature are Parameter Lines (u=const., v= const.), the Six Fundamental Quantities, E, F, G, L, M, N, are Functions of One Varlable Only.

WM. H. Bates.

The following simplifications come out of the data:
(1) $\mathbf{F}=0=\mathbf{M}$ (Since lines of curvature are parameter lines).
(2) The v - derivatives of $\mathrm{E}, \mathrm{G}, \mathrm{L}, \mathrm{N}$ vanish. (Since the latter are functions of u only.)
(3) We may substitute for u a function defined by the equation,

$$
\mathrm{Edu}^{2}=\mathrm{du}^{\prime 2}
$$

which makes $\mathrm{E}, \mathrm{G}, \mathrm{L}$, and N functions of u^{\prime} only. Also the system of parameter curves is (as a whole) not changed, for when $u=$ const, $u^{\prime}=$ const also. Now if we drop the prime from u^{\prime}, the snbstitution has exactly the effect of making $E=1$.

Let ($\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$) and ($\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}$) be direction cosines of tangents to the v-curve and u-curve at any point of the surface. These tangents, together with the normal to the surface (direction cosines of which are X , Y, and Z) at the point form a rectangular system of axes.
(1) $\mathrm{X}_{1}=\frac{\delta \mathbf{x}}{\delta \mathbf{u}} ; \mathrm{Y}_{1}=\frac{\delta \mathbf{y}}{\delta \mathbf{u}} ; \mathrm{Z}_{1}=\frac{\delta \mathbf{z}}{\delta \mathbf{u}}$ (since $\mathrm{E}=1$).
(2) $\mathrm{X}_{2}=\frac{1}{\sqrt{\mathrm{G}}} \frac{\delta \mathrm{x}}{\delta \mathrm{V}} ; \mathrm{Y}_{2}=\frac{1}{\sqrt{\overline{\mathrm{G}}} \frac{\delta \mathbf{y}}{\delta \mathrm{V}} ; \mathrm{Z}_{2}=\frac{1}{\sqrt{\overline{\mathrm{G}}}} \frac{\delta_{\mathrm{Z}}}{\delta \mathrm{V}}}$

Then the differential equations for the general surface (see Bianchi, 1902 Edition, p. 123) become after introducing the above simplifications,
(3) $\frac{\delta \mathrm{X}_{\mathrm{I}}}{\delta \mathrm{u}}=\mathrm{LX}$
(4) $\frac{\delta \mathrm{X}_{1}}{\delta \mathrm{y}}=\frac{\mathrm{d} / \overline{\mathrm{G}}}{\mathrm{du}} \mathrm{X}_{2}$
(5) $\frac{\delta_{2}}{\delta u}=0$
(6) $\frac{\mathrm{X}_{2}}{\delta \mathrm{v}}=\frac{\mathrm{N}}{\sqrt{\mathrm{G}}} \mathrm{X}-\frac{\mathrm{d}_{V} / \mathrm{G}}{\mathrm{du}} \mathrm{X}_{1}$
(7) $\frac{\delta \mathrm{X}}{\delta \mathrm{u}}=-1 \mathrm{X}_{1}$
(8) $\frac{\delta \mathrm{X}}{\delta \mathrm{V}}=-\frac{\mathrm{N}}{\mathrm{l}^{\prime} \mathrm{G}} \mathrm{X}_{2}$
and similar equations for Y and Z .
Note. These, together with the simplified (iauss and Codazzi equations, should give by integration the required surfaces. In the attempt to perform the integration, the following geometric solution was reached. I hope to complete the solution by integration later.

The r-curres make principal sections.
The equation of principal normal to the surface is

$$
\begin{aligned}
& \frac{\xi-\mathrm{x}}{\frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{ds}^{2}}-}=\frac{\eta-\mathrm{y}}{\frac{\mathrm{~d}^{2} \mathrm{~J}}{\mathrm{ds}^{2}}}=\frac{\zeta-\mathrm{z}}{\mathrm{~d}^{2} \mathrm{Z}}-\frac{\mathrm{ds}^{2}}{} \\
& \text { dx dx } \\
& \overline{\mathrm{ds}}=\underset{\mathrm{ds} \mathrm{v}}{\text { - along } \mathrm{v} \text {-curve }} \\
& \text { dx } \\
& =-\overline{d u} \text {, since } d s_{v}=\mathfrak{v}^{\prime} \mathbf{E d u}=\mathrm{du} \\
& =\frac{\delta x}{\delta u}+\frac{\delta x}{\delta v} \frac{d v}{d u} \\
& =\frac{\delta_{\mathbf{x}}}{\delta_{\mathbf{u}}} \text {, since } \mathbf{v}=\mathrm{const} \text {. } \\
& =\mathrm{X}_{1} \\
& \frac{d^{2} x}{d s^{2}}=\frac{d_{1}}{d u}=L X .
\end{aligned}
$$

Similarly for y and z, giving

$$
\frac{5-x}{x}=\frac{1-\mathrm{y}}{\mathrm{x}}=\frac{-\mathrm{z}}{\mathrm{z}}
$$

which is the normal to the surface at (x, y, z).

The t-rurres are also plane rurtes.
Torsion $\underset{\mathrm{T}}{\frac{1}{=}}=\sqrt{\left(\frac{\mathrm{d}^{\prime}}{\mathrm{ds}}\right)^{2}+\left(\frac{\mathrm{d}_{1 /}}{\mathrm{ds}}\right)^{2}+\left(\frac{\mathrm{d}_{\mathrm{l}}}{\mathrm{ds}}\right)^{2}}$ where $\%, \mu, r$ are direction cosines of bi-normal to curve (here $\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}$)

The u-curves have constant radius of currature.
The equation of radius of curvature is,

$$
\begin{aligned}
& \left.\frac{1}{\mu^{2}}=\left(\frac{\mathrm{d}^{2} \mathrm{x}}{-} \frac{-}{\mathrm{ds}^{2}}\right)^{2}+\left(\frac{\mathrm{d}^{2} \mathrm{y}}{-}\right)^{2}+\left(\begin{array}{c}
\mathrm{d}^{2} \mathrm{z}
\end{array}\right)^{2}+\right)^{2} \\
& \frac{\mathrm{dx}}{\mathrm{ds}}=\frac{\mathrm{dx}}{\mathrm{ds} \mathrm{su}}=\mathrm{X}_{2} \\
& \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{ds}^{2}}=\frac{\mathrm{d}}{\mathrm{ds} \mathrm{~s}_{\mathrm{u}}} \mathrm{X}_{2} \\
& =\frac{\delta \mathrm{X}_{2}}{d v} \frac{\mathrm{dv}}{\mathrm{ds} \mathrm{~s}_{\mathrm{u}}} \\
& =\frac{1}{\sqrt{ } \overline{\mathrm{G}}} \frac{\delta_{\mathrm{X}_{2}}}{\delta} \text {, since } \mathrm{ds}_{\mathrm{V}}=\overline{\mathrm{G}} \mathrm{dv} \\
& \frac{d^{2} x}{d s^{2}}=\frac{1}{\sqrt{G}}\left(\frac{N}{, G} x-\frac{d_{V} G}{d u} X_{1}\right) \\
& \text { So, } \frac{d^{2} y}{{d s^{2}}^{2}}=\frac{1}{\sqrt{G}}\left(\frac{N}{l^{\prime} G} Y-\frac{d_{1} \bar{G}}{d u} Y_{1}\right) \\
& \frac{d^{2} \mathrm{Z}}{\mathrm{ds}^{2}}=\frac{1}{\mathrm{I}^{\prime} \mathrm{G}}\left(\frac{\mathrm{~N}}{\sqrt{\mathrm{G}}} \mathrm{Z}-\frac{\mathrm{d}_{V} \overline{\mathrm{G}}}{\mathrm{du}} \mathrm{Z}_{1}\right) \\
& \frac{1}{\mu^{2}}=\frac{1}{G}\left[\frac{N^{2}}{G}-X^{2}-2 \frac{N}{G} \leq X_{1} X+\left(\frac{d_{l} G}{d u}\right)^{2} \leq X_{1}^{2}\right] \\
& \Sigma \mathrm{X}^{2}=1=\Sigma \mathrm{X}_{1}^{2}+\triangle \mathrm{X}_{1} \mathrm{X}=0 \\
& \frac{1}{\rho^{2}}=\frac{1}{G}\left[\frac{N^{2}}{G}+\left(\frac{d_{1}^{\prime} G}{d u}\right)^{2}\right] \\
& =\text { function of } \mathfrak{u} \text { only. }
\end{aligned}
$$

\therefore const for u-curves.

The u-curves are also plane rurves, and therefore sircles.
We may write equation of torsion in!the form,

$$
\frac{1}{\mathrm{~T}}=-\rho^{2}\left|\begin{array}{lll}
x^{\prime} & \mathrm{y}^{\prime} & z^{\prime} \\
x^{\prime \prime} & y^{\prime \prime} & z^{\prime \prime} \\
x^{\prime \prime \prime} & \mathrm{y}^{\prime \prime \prime} & z^{\prime \prime \prime}
\end{array}\right|
$$

(where primes denote derivatives with respect to s).
From last paragraph we have for u -curves,

$$
\begin{aligned}
& x^{\prime \prime}=\frac{d^{2} x}{d s^{2}}=\frac{1}{\sqrt{G}} \frac{\delta X_{i}}{\delta v} \\
& x^{\prime \prime \prime}=\frac{d}{d s_{u}}\left(\frac{1}{v / G} \frac{d X_{2}}{i v}\right) \\
& =\frac{\delta}{\delta v}\left(\frac{1}{V / G} \frac{\delta \mathrm{X}_{2}}{\delta_{\mathrm{v}}}\right) \frac{\mathrm{dv}}{\mathrm{ds} \mathbf{s}^{\prime}} \\
& =\frac{1}{\mathrm{G}} \frac{\delta^{2} \mathrm{X}_{2}}{\delta^{2}} \\
& =-\frac{1}{G}\left[\frac{N^{2}}{G}+\left(\frac{d_{1} \bar{G}}{d u}\right)^{2}\right] X_{2} \text { from (6), (4) and (8) } \\
& \mathrm{x}^{\prime \prime \prime}=\phi(\mathrm{a}) \mathrm{X}_{2} \\
& \text { So } \mathbf{y}^{\prime \prime \prime}=\phi(\mathrm{u}) \mathrm{Y}_{2} \\
& \mathrm{z}^{\prime \prime \prime}=\rho(\mathrm{u}) \mathrm{Z}_{2} \\
& \frac{1}{\mathrm{~T}}=-\rho^{2} \phi(\mathrm{u}) \frac{1}{{ }_{1^{\prime}} \mathrm{G}}\left|\begin{array}{ccc}
\mathrm{X}_{2} & \mathrm{Y}_{2} & \mathrm{Z}_{2} \\
\delta \mathrm{X}_{2} & \delta \mathrm{Y}_{2} & \delta \mathrm{Z}_{2} \\
\delta \mathbf{V} & \delta \mathbf{V} & \delta \mathbf{V} \\
\mathrm{X}_{2} & \mathrm{Y}_{2} & \mathrm{Z}_{2}
\end{array}\right|=0
\end{aligned}
$$

Since the n-curves are plane and have constant radi of curvature they are circles.

Finally, the plane of each v-curve is normal to every n-circle, and therefore passes through its center. The intersection of any two v-planes determines the line of centers of the u-circles. Thus all the required surfaces are surfaces of revolution. Taking the line of centers of u-circles as z-axis and the plane of any u-circle as xy-plane, the equation of our surfaces are

$$
\left\{\begin{array}{l}
\mathrm{x}=\mathrm{u} \cdot \cos \mathrm{v} \\
\mathrm{y}=\mathrm{u} \cdot \sin \mathrm{v} \\
\mathrm{z}=\mathrm{f}(\mathrm{v})
\end{array}\right.
$$

[^0]: *summer of 1905.

