A Technic for the Bacteriological Examination of Soils.

H. A. Noyes* and Edifin Voigt. \dagger

For nearly half a century investigators have been developing bacteriological technic. Most of the "standard" methods that have resulted from past investigations are adapted to medical rather than to industrial bacteriology. The results obtained by following the average technic are only "qualitatively quantitative" for the methods used are qualitative.

Only of late has extended rescarch been done in the field of soil bacteriology and consequently there is no standard technie for the bacteriological examination of soils. Judging from recent publications soil bacteriologists are adapting medical methods with varying sucersses and faihures. Of late (1) a move has been made to stindardize methods for the bacteriological examination of soits. Methods that are accopted as "standard" will have to be founded on the fundamental principles of physies and chemistry. Soil physies is not completely understood and the fundamental chemical changes going on in the soil have not been worked out so advances in bacteriological methods will of neressity have to be related to the development of soil physies and soil chemistry. The following artide is submitted with the hope that it may bring out swme applications of physical and chemical terehic worthy of consiteration by other investigators and may help a little in the standardization of methods of terbhir. 'These mothods have been suceressfully followed in the Hortieultural Rescardh Chemistry and Bacteriology lathoratories of the Purdue Agricealtural Bxperiment Station during the past three years. The teehnie followerl, while not entirely original with the authors of this paper, has greatly facilitated the mamipulation of sample, media, and apparatus, without in any way imparing the arouracy of the methods used.

That part of the apparatus which differs from that used in most laboratories is described below.

Sampler for Taking Soll Sample.

For sampling the soil, the bacteriologist's sopl sampler is used. This sampler is the result of an attempt on the part of the senior author to devise a piece of apparatus that would overeome the inaceuracies that oceur through the employment of the usual metherls of sampling. The atuthors have considerable data which show that differeneres in the acration of soils affeet the hacterial content and are hence stronger adrocates than before, for the sampler. We quote as follows from the published artiele which deals with the bacteriologist's soil sampler." "The sampler is a brass tube 11 inches

[^0]in length and 2 inches in diameter, open at both ends. One end is sharpened to a cutting edge. This cutting edge is so made that the core of soil is cut out and the compaction of soil that is necessary in order to make room for the sampler takes place outside the tube. The cutting end is fitted with a tight fitting 2 inch brass cap. The uncapped end plugged with cotton makes the sampler complete. This sampler embodies at least four of the principles that a good sampler should have: (1) it is easily sterilized and kept sterile;

Figure 1-Dilution Bottle and Mixing Spoon.
(2) it is easy to use; (3) it takes and keeps the soil sample free from contamination; (4) it is durable."

For Mixing the Sohl Sailple.

For mixing the soil when it is taken from the sampler a two quart graniteware sauce pan and an aluminum spoon, tablespoon size, are used. 'The aluminum spoon is bent so that it will fit the mouths of the 12 ounce dilution bottles. Figure I.

Figure II- Container for sterile water.

Dilution and Test Bottles.

Whitall-Tatum Co's make, (Figure I-regular shape, saltmouth bottles have been found more satisfactory for making dilutions and soil extracts than erlenmeyer flasks. The sizes used are S, 12 and 16 ounces respectively. The 8 and 12 ounce sizes being used in making dilutions and the 16 ounce size for extracting nitrates. The advantages of these bottles for making dilutions are that they stand sterilization at $200^{\circ} \mathrm{C}$, can be compactly piled into the hot air sterilizer, are not as easily broken as flasks, and can be advantageously washed with a bottle brush. (The bottle breakage with us has been about one tenth what the erlenmeyer flask breakage used to be, and the bottles apparently stand sterilization as well.)

Contaíner for Sterilizing and Keeping Sterile Water.

All water is sterilized by boiling on three successive days in an especially constructed copper boiler, lined with tin. Figure Il. The boiler is an 8 gallon copper aspirator bottle having a rather large and long neck, allowing first, a large cotton plug (which permits the water to be boiled without blowing out the plug), second, the transmission of enough heat to thoroughly dry the cotton plug after boiling is over. The outlet tube is closed by a rubber stopper, through which passes a tube fitted with a glass stop-cock. The glass tube on the other side of the stop-cock contains a right angle bend. The stop-cock and outlet tube are sterilized by allowing about a pint of boiling water to run out through them cach time the water is boiled, and kept sterile by keeping the end of the tube immersed in a test tube of 70 percent alcohol, or 3 per cent hydrogen peroxide.

For Incubation Tests.

One half pint jell glasses with loose fitting lids are used as containers for soil subjected to incubation tests. The jell glass is preferable to either a beaker or tumbler because it has a lid, and is to be preferred to a beaker because the soil can be removed by inverting the jell glass and dropping it with smart slap, on a hard surface.

Pipettes.

The short form volumetric pipettes, Figure III, are used for making dilutions and in taking aliquots for plating. These can be used as accurately as the regular form and apparently have the following advantages for bacteriological work: (1) are easier to handle and wash; (2) can be readily sterilized in large test tubes, as they pack in well and are not as liable to breakage; (3) are easier to fill; and (4) soil emulsions drain out more quickly and completely from them.

Sterilization by Dry Heat.
For hot air sterilization the "Láutenschläger" ovens are quite satisfactory. The large amount of sterile glassware necessary for soil work and the desirability of handling the glassware by the ovenfur had led to the supplement-

Figure lll- lipettes and pipette case.
ing of the "Láutenschläger" oren by a two burner gas plate and several detarhable haking ovens. A square of ashestos is laid over each humer to diffuse the heat, and holes about one insh and a half in diameter are made in the top lining and top of ach wen, to alow the moisture formed by the
burning gas to escape. It is desirable to have the holes cut in the oven so that one is not exactly above the other. By using the detarhable baking ovens apparatus can be sterilized some days previous to the time the samples are taken and an oven with its contents can be set to one side while another ovenful of glassware is sterilized. This simplifies the handling of petri plates and dilution bottles as the ovens can be carried directly to the work table without handling the apparatus and risking chance contamination. This is very important where a large number of petri plates are used at one time.

Autorlate.
The American Sterilizer Company's autoclave has proven in spite of its high initial cost to be very efficient and economical for within one half hour from the time the gas is lit not only eighteen pounds pressure of steam can be generated but one load of material can be given a ten minute sterilization under eightecn pounds pressure of live steam. The automatic valve which regulates the pressure of the steam in the boiler by shutting off or turning on the gas is a feature appreriated by the investigator.

Water Bath

A water bath, is used to cool the agar media to $45^{\circ} \mathrm{C}^{\circ}$ after it has been melted in the autoclave. The media is then kept in the bath at $40^{\circ}-42^{\circ} \mathrm{C}$ until it is poured into the petri dishes.

Absorbent Cotton

By buying in quantity absorbent cottou is as cheap as the bat cotton at retail prices. It is preferable because the fibre is cleaner and better plugs can be made from it.

Mallets.

The mallet for driving the bacteriologist's soil sampler should be of woud and not weigh over three pounds. The light mallet for use in the laboratory weighs about a half a pound and is made from very light wood.

Petri Dishes

Petri dishes 10 centimeters in diameter and 15 millimeters high have been most satisfactory. The top of the dish should not have a rim deep enough to come down to the table when the dish is placed right side up, on a table.

THE TECIINIC

The technic is given as directions for handling ten simples of soil at one time. In addition to the ordinary apparatus such as bumers, antoclave. ovens and so forth being ready for use, the following apparatus mist be ready
for use. No list is made here of the chemical apparatus that is necessary for nitrogen, moisture, nitrates or other chemical determinations that are to be run on each sample.

List of Apparatus Needed Before Plating is Finished

10 Bacteriologist's soil samplers capped, plugged and sterilized.
1 Driving mallet.
1 Driving head.
1 Light wooden mallet.
12 quart saure pan.
1 Alaminum spoon (tablespoon size.)
1112 ounce plugged and sterile salt mouth bottles.*
5.5 s ounce plugged and sterile salt mouth bottles.

1016 ounce salt mouth bottles with rubber stoppers.
30) One half pint jell glasses (sterile.)

1 Set Balances sensitive to 0.1 gram with a caparity of 400 grams per pan.
\& Liters of sterile water.
11 Rubber stoppers to fit 12 ounce bottles.
72 Test tubes of sterile media.
67 Sterile 10 rec. vol. short form pipettes, plugged and in eases.
24 Sterile 1 ere vol. short form pipettes plugged and in rases.
1 Sterile \bar{s} ree pipette plugged and in a test tube case.
7: Sterile 100 millimeter petri dishes.
10 (One pint Mason jars with rubbers.
1200 (\%. graduated evlinder, phagged and sterilized.
1100 (\%. graduated eylinder, plugged and sterilized.
2 (i-inch Battery jars.
The numbers given are exactly what is needed. Nore apparatus is always prepared to tate care of mishaps or mistakes.

Procredure

T'ake 10 samplers, remove the ('aps, rubs a piece of paralfin over the outside of earh just above the rutting edge (this is so the (ap will slip on easily after the sample is taken), and replace the raps on the samplers. The cap and the sampler it fits shotid be stamped with the same number. Plug the samplers with absorbent eotton, sterilize them in hot air owen, rool and stand in a suitease. Keep the samples upright.

Plag, with absorbent cotton, the joj cight ounce bottles two hundred ee. grarluated cylinder and one hundred er. graduated revlinder, place them in one of the made over baking ovens and sterilize them. Jlug the 11 twelve ounce bottles with absorbent cotton, wrigh earh to the nearest decigram,

[^1]mark the weight on the bottle and sterilize in the same manner as the other bottles.

Weigh each of the 30 jell glasses to the nearest decigram and record the weight on the tin lid. As a rule it is advisable to sterilize the jell glasses with dry heat so as to be sure that they are free from any contaminations resulting. from previous use or storage.

Plug the stems of the 10 cc. the 5 cc. and the 1 cc. pipettes with absorbent cotton. Prepare 12 inch by 1 inch test tubes by placing a mat of absorbent cotton in the bottom of each. Place the pipettes in the test tubes, plug the test tubes with cotton and sterilize in a hot air sterilizer. (Two ten ec. or four one ec. pipettes are sterilized in one test tube.)

Plate I.
Ready to Start.
Media is made up and sterilized and distilled water for making dilutions is sterilized in the special boiler. The casein solution for ammonification, the mannite solution for nitrogen fixation and the ammonium sulphate solution for nitrification are made up and sterilized.

The light wooden mallet, a bunsen burner, the two quart saucepan, the aluminum spoon, the sixteen ounce salt mouth bottles, the weighed bottles and jell glasses, the ten one pint mason jars and the balance are arranged on the laboratory table. (Plate I.) The heavy mallet, the driving head, and the samples are taken to the field and the soil samples taken according to directions given in a previous article. ${ }^{2}$ Eleven rubber stoppers of such size that they will fit the twelve ounce bottles are put in the inner part of a double
boiler, covered with distilled water and the double boiler placed over a bunsen burner.

Handling of Soll Sayple

When the samples reached the laboratory they are set out in a row on the laboratory table where the apparatus has already been arranged. The bunsen burner is lighted and the sancepan and aluminum spoon are wterlized by passing them through the free flame several times. The pan is set down on the bench and the spoon placed inside of it. A sampler containing a samper of soil is wiped off with a towel to free it from loose soil on the outisde, the light mallet is sterilized in the free flame and placed in the sterise sancepan. 'The outside of the sampler is sterilized in the flame. The cap is removed from the sampler, ant laid to one side The sampler is held, with the left hand, over the saucepan and struck with the malet, the soil falls out into the pan. (We have fonnd this the most affirient way of remoring the soil from the sampler unless the soil is frozen.) The soil is now thoronghly mixed with the aluminum spoon.
'lace one of the mrevionsly weiged twelve ounce bottes on one pan of the balance and then place 30 grams more that the bottle weighs on the wher pan. Remove the cotton plug flame the mouth of the hottle, place the botale on the balanee pan and lay the cotton plug top down in the balance pan heside the botte. By means of the alomimm spon quickly introduce fifty grams of soil into the botile, thane, then replace the cotfon plug and set the bottle to one side.

Into eatch of three of the joll glasses weigh out one hundred grams of the soil, for conducting the physiological tests, and set the jell glasses to one side. Werigh out on a paper jof gins. of the soil and pat it in one of the 16 ounce saltmoutl bottles. (This is the aliguot for the determination of nitrates present in the fied soil.) Put the remainder of the sample in one of the Mason jars and seal the jar. Clean the graniteware pan and aluminum spoon. Usually all the visable soil is removed by wiping with a piece of absorbent cotton. Each of the other samples of soil is handled in the same way. The heat is started under the double boiler containing the rubber stoppers and preparations are made 10 melt the media and get it in the $-10^{\circ} \mathrm{C}$ water bath. If proper preparations were made the media can be melted and prepared while the dilutions are being made.

Makling Bactermal, Diletions

The sterile graduated eylinders and the tank of sterile water are placed on the laboratory dable and sterile water drawn off as follows. Remote the test tube of aleohol that is orer the ontlet to the tank, allow about a pint of water 10 rum out and diseard it. Flame the rot ton plag of the 200 ee graduated "ylinder, remove it. Hame the mouth of the eylinder, and then by means of the graduated exfinder add 200 ere of the sterile water to each of the 10 twelve
ounce bottles to which aliquots of soil were added and to the extra bottle that was prepared for a blank check. In each case the cotton plug and lip of the bottle is flamed just before the bottle is opened for the addition of the water. Now bring up the oven containing the fifty-five eight ounce bottles, take the sterile 100 ce. graduated cylinder, flame the cotton plug, remove it, flame the mouth of the cylinder and by means of the graduated cylinder place 90 ce. of sterile water in each bottle. The cotton plug closing each of the bottles is flamed just before the bottle is filled. The eight ounce bottles are arranged in five rows each eleven bottles long, running lengthwise of the bench.

Plate II.
Adding of sterile water to soils and dilution bottles.

The bottles containing the water and soil are set out in a row in front of the other bottles, (Plate II). The rubber stoppers that have been steaming in the double boiler are put in the bottles containing soil and water in place of the cotton plugs. Work from left to right always as it is easier and such a system prevents mistakes. The flrst two of the bottles in the front row are grasped, one in each hand, in such a way that the index finger presses down on the stoppers. The bottles are lifted up from the laboratory table, the hands and arms are turned so that the bottles are upside down, and the bottles are shaken vigorously for fifteen seconds and then placed back on the table. The next two bottles are picked up in the same manner, inverted, shaken for fifteen seconds and then placed back on the table. This is continued until each bottle has been shaken 10 fifteen second periods.

The pipettes, in their test tube sterilizing cases, are brought within easy reach. Commencing at the left end of the front row of bottles proceed as follows: Remove, without having the fingers come in contact with the bull, a 10 cc. pipette from its test tube case, get the soil and water in the first bottle, (which is a 1-4 dilution of the bacteria in the field soil) thoroughly in motion by shaking and while the mixture is still in motion fill the pipette. Pick up the eight ounce dilution bottle which was directly behind the first bottle taken, flame the cotton plug and remove it. While holding the plug in the hand, blow out the 10 ce. mixture of soil and water from the pipette into the 90 se. of water, replace the eotton plug, and set the bottle hack in place.

P'ate IIl.
Making lBacterial Dilutions.

The pipette is dropperl into a battery jar half full of water as it is hard to dean if the soil is allowed to dry on the glass. The mixture just made is a 1-40 dilution of the bacteria in the field soil. Make the $1-40$ bacterial dilutions of the other samples in the same way. The bottle containing the 200 re. of sterile water is treated exactly as though it eontained soil, (Plate ILI.) The bottles from which the dilutions have been made are put on a tray and carried away.

The hottles rontaining the 1-40 bacterial dilutions are each shaken for ten seconds as vigorously as it is possible to shake them without wetting the cotton plugs. When all have been shaken start over and shake earh bottle again. This is repeated until earh hottle has heen shaken 10 ten serond prerods. The procorlure followed in making the 1-40 bacterial dilutions is
followed in making the 1-400 bacterial dilutions and the bottles containing $1-40$ bacterial dilutions are taken away. The 1-400 dilutions of the bacteria in the field soil are shaken, in order, until each bottle has been shaken the 10 ten second periods. Following the same technic we make $1-4,000,1-40,000$ and $1-400,000$ bacterial dilutions. The $1-40,000$ and $1-400,000$ bacterial dilutions are retained for plating while all other dilutions are discarded. The $1-400,000$ bacterial dilutions are shaken exactly as though dilution were to be made from them.

Plate IV.
Ready to pour plates.

Plating

Thirty-six petri dishes are taken from an oven and spread out on the laboratory table. Care is taken to prevent contamination from the lifting up or sliding of the lids of the dishes. The dishes are arranged in rows of three. All dishes are labeled and numbered, each set of three being numbered to correspond to one of the soil samples. The six dishes in excess of the thirty actually needed for plating one dilution of the bacteria in the ten samples of soil are utilized as follows; three for plating the water that has been run as a check on the techmic and three to plate the media alone. This enables the investigator to trace contamination to the water, air, or media. and classify the contamination accordingly. (Plate IV.)

One of the dilution bottles is taken, the cotton plug flamed, a one ce. pipette taken from a test tube case, the bottle shaken, the plug flamed and
removed, the pipette inserted and allowed to fill to the mark. The pipette is withdrawn and the eubic centimeter of solution blown out into one of thrpetri dishes prepared for plating that sample. Using the same technic two more one cubic centimeter aliquots are taken from the same bottle and put in the other two of the triplicate plates prepared. The bottle and the pipettes are put to one side. A tube of media is taken from the $40^{\circ} \mathrm{C}$ water bath, the plug removed, the mouth of the tube flamed and the media then poured into one of the petri dishes to which the aliqnot of solution has been added. The dish is rotated to thoroughly mix the media and solution and to get an even layer all over the dish. In carrying out the above procedure as much care as possible is taken to prevent the plates from being contaminated from outside sources. The other two of the triplicate plates are then poured. Three plates are then made in the same way from each of the other $1-40,000$ bacterial dilutions and of the media. The plates are piled in stacks of three and moved to one end of the laboratory table. The remaining thirty-sis petri dishes are taken from the oren, laid out on the table, labeled, and platings mate from the $1-400,000$ bacterial dilutions. These plates are stacked in piles of three. The piles of plates after the agar has hardened are inverted, placed in trays and the trays are set in the $20^{\circ} \mathrm{C}$ ineubating room. The plates are inverted becanse after they are poured they are less liable to contamination if inverted, and because the formation of spreaders is hinderef.

Where a man works slowly or is working alone the $1-400,000$ baceterial dilutions are not made until after the $1-40,000$ bacterial dilution have been plated.

The jell grlasses containing the one hundred gram quantities of field soil are separated into three groups, one of each of the triplicate glasses from one sample of soil heing put in each group. To eath glass of one sed is added five (e. of ammonium sulphate sohtion for nitrification tests, to earh glasis ol another set tem ere of mamite solution for nitrogen fixation tests and to earch glass of the third set ten eec. of casein solution for ammonification tests. The jell glasses dre then incubated in the $20{ }^{\circ} \mathrm{C}$ inconbation room for the proper lengthes of time.

To earh of the 16 ounce lottles containing the fifty gram aliquots of soil distilled water is added and the nitrates determined. The samples in the Mason jars are analyzed, as soon ats time permits, for moisture, nitrogen, and wher clements desired. The moisture is neeessary to put results on a dry hasis and the nitrogen rontent is needed to hase nitrogen fixation results upon.

Discussion

Sterile Apparatus

The technic ralls for the sterilization of samplers, of ditution bottles, of the glasses used for incubation tests ant all other apparatus. From reports made reerently ${ }^{3}$ it would seem to some that sterility of apparatus for agrirultural bacteriology has been over-emphasized. Some might maintain that
the samplers need not be sterile if they are clean and that the contamination in the lower dilutions from clean dilution bottles would be negligible.

As long as clean does not mean the same to all workers and just as long as we will admit that unless apparatus is sterile we do not know just how great or of what kind the contamination is-sterile utensils and glassware should be used for the crudest of tests and are absolutely necessary for investigational and research work.

SAMPLER

The reasons for using the sampler have already been given. The facts (1) that this apparatus samples as accurately under sod as under clean cultivation; (2) that it does not destroy the cultural practices, and (3) that it may be used with as much accuracy and safety near a tree, shrub, or bush. as in the open field are emphasized.

Field Versus Air Dry Samples

If aliquots for bacteriological analysis are taken from air dry samples a discussion of methods and a technic for sieving or grinding the air dry samples would be in place. Air dry samples cannot properly be used to determine the bacteria present in field soils unless ic is proven by careful investigation that changes in moisture, in aeration, and in temperature have no effect on the bacterial content of the soil.

Size of Aliquot of Soil

A small sample of soil is not representative. Soils are not composed of equal sized particles or of particles of the same material. Cranting that a given soil contained particles all of the same composition and which were non-porons, the variation in the area of the soil particles of two different chance aliquots might be as much as the area of the particles of one of the aliquots. Add the fartor of different kinds of particles to that of variation in size and it is safe to say that no two samples of soil are exactly alike. If the size of the aliquot of soil taken for analysis is decreased heyond a certain point, a small proportion of the larger, rock particles must necessarily account for a larger per cent of the weight and cut down the area of the soil particles in the aliquot.

If air dry samples could be used the aliquot required to be representative would be smaller than that required from a field sample. It has not been proven advisable to use air dry samples and so aliquots of the moist field soil are used. Dr. P. E. Brown (4) takes on one hundred gram aliquots of field soil from which to make bacterial dilutions, while Dr. H. Joel Com (5) uses one-half gram aliquots of field soil from which to make bacterial dilutions.

The authors of this paper have investigated the amount of soil to use to get representative counts and summarize their results as follows:

8432-19
(1) When tests were made to determine the amount of soil necessary to get reliable checks in moisture determination on a silty clay soil, taking aliquots from the sample jars as they came from the field, it was found that it look ten gram aliquots to have the duplicates check regularly to one tenth of one per cent. The soil rarely contained particles os stone or foreign matter that could be picked out and no attempts were made to weigh out exart amounts so we were forced to conclude that to get accurate moisture results ten grams of field soil had to be used. This was when the soil contained 12% to $15 c_{0}$ of moisture. Having made the above test, and knowing that the basteria which are present in large numbers, are small, and must be distributed in the sample more or less relatively to the internal surface of and the composition of the sample, the authors are forced to conclude that it would take larger aliquots to get good bacteriologieal results than it would for goorl moisture results.
(2) Where the ground is rovered with plants and their roots are incorporated in the surface soil, it is evident that a larger aliquot must be taken to represent the soil.
(3) When the soil is frozen it is harder to mix the samples and a large aliquot must be taken to overoome inaceuracies in attempts at mixing.
(4) A large quantity of soil must be chosen so that the same sized atiquots of all normal types of soil can be amatyed acrurately. This gives a standard.
(5) Fifty grams of ficld soil were chosen as the quantity from which to make dilutions for the following reasons. Although smaller than the amount used by Dr. Brown it allows the counts made from dupleate and triplicate aliquots from the same fiede sample to elleek as well. The results of an extended investigation on size of aliquot of field soil to use will be published as a separate paper.

DIIITION

The chemist makes dilutions of various ehemical "ompounds and mixtures of chemical eompounds. To the chemist a specified dilution is a mixture such that all aliquots taken from it hy weight or by volume will be of the satme composition.

Definite amounts of solids are put in solvents and the resulting efear true solutions are exact dilutions of the sulstances used providing no chemical reaction takes place. Solutions of acids, bases and salts are diluted with water or some other proper solvent and the amounts of materials in the more dilute true solutions bear definite relations by weight and volume to the amounts in the original more concentrated solutions. Definite amounts of a fincly divided or ground material are put with definite amomes of another finety divided or ground material and thoroughly mixed. The resulting mixtures are dilutions of both materials because aloquots of mixture have the same eomposition and the proportions of the original substances contained,
bear definite relations to the concentration of the materials used to make the mixture.

The bacteriologist makes specified dihutions and solutions of media and salts in the same way the chemist does. Further the bacteriologist has to reduce the concentration of the bacteria in all kinds of materials so that an aliquot containing few enough bacteria to be handled with present apparatus and technic can be taken. Water is the usual diluent employed and the concentration of the bacteria has to be reduced whether the substance under examination is a gas, liquid, or solid, whether it is soluble or insoluble, miscible or non-miscible.

When the substance under bacteriological examination is a liquid the report is usually made of number of hacteria per ec when a solid of the number of bacteria per gram. When the materials are such that sperified dilutions of them can be mode, the bacteriological dilutions are dilutions of both the materials and the bacteria. When the materials are solids or nonmiscible the bacteriological dilutions are dilutions of the bacteria only.

Bacteriologically speaking the dilution of bacteria states the number of eubic centimeters of diluent which would contain the number of bacteria in one gram or one cubic centimeter of the original material.

Throughout this paper the phrases dilution of bacteria per gram of field soil and bacterial dihtion have been used. Investigators and texts agree fairly well that the bacteria in soil are intimately associated with the moisture in the soil. Explanations of the finding of living bacteria in frozen soil cluster about discussions of whether the films of moisture surrounding the soil particles are really frozen. The bacteria in soil, when dilutions are made, are diluted for they are distributed through a larger volume of water. Dilutions are based wholly on the volume of water added. Fifty grams of soil and 200 ec of water means a 1-4 bacterial dilution of the fifty grams taken. for each gram of soil has four cubic centimeters of water to give up its bacteria to. Subsequent dilutions are based on the volume of the aliquot of the lower dilution taken. The soil that makes up part of the aliquot is considered as water. So little of the field soil is soluble and such a small part of it really gets through to the high bacterial dilutions that the soil in the aliquot is usually ignored.

Basis of Dilutions

The reason that the dilutions are based on 1-4 and not on the 1-2 or 1-10 is that it has been found that on the 1-4 basis the best plates trom average soil are secured from either the $1-40,000$ or the $1-400,000$ bacterial dilutions of the bacteria in the soil. 100 colonies on plates from the $1-10,000$ hacterial dilution mean 4 million bacteria per gram of field soil while 100 rolonies on plates from the $1-400,000$ dihution mean 40 million bacteria per gram of field soil taken. This allows a larger variation in the bacterial content to be handled more satisfactorily with the same number of dihtions and technie than can
be handled on the $1-2,1-200,1-2,000$, etc., or the $1-10.1-100,1-1,000$, etc. systems of dilution. Calculations are not hard as the number of colonies divided by 25 or 2.5 . according to the dilution, gives millions of bacteria per gram of field soil.

Number of Bacterial Dilutions Necessary

Results obtained where the bacterial coutent is low should be comparable with results obtained where the bacterial content is high, therefore a uniform system for mabing dilutions is adrisable. Suppose the 1-40 barterial dilution of a gravel should contain few enough bacteria to yield good plates but that it was neressary to make a $1-40,000$ bateterial dilution of a sandy soil in order to get as good plates. A $1-40$ dilution of the sandy soil should be made in the series of dilutions to have the results comparable for maximum crrors orefur in the first bacterial dilution made.

Representative aliquots are necessary if results are to approach aecuracy. It takes larger aliquots of some solutions and mixtures to have the aliquots represent the solution or material under investigation than it does of others. Using a pipette graduated to .005 of a eubice (ontimeter, a . 0 . er aliquot of a elear. dilute sodium chloride solution would be representative of the sodium chloride present in the solution. A . (0) re aliquot of a turbid solution would not be repesentative even if taken with the same pipette, for the suspended material would interfere with the composition of the small aliquot and affere the arecuraer with whirh the pipette could be used. In mixtures of soil and water the soil particles vary in size, in shape, and in sperific gravity. An aliquot of a soil abd weater mixture must be rather large to be representative (at alb) of the mixture. A soil and water mixture is not homogencous for the following reasons:

1. It is not a solution.
2. Soil is heavier than water and the particles settle out, even when the mixture is in motion hereatse of differences in size, in shape and in specife gravity.
Frrors that orerur in aliquoting a soil and water mixture are:
3. Some of the material in suspension is taken as part of the aliquot when an aliguot is frawn from the moving mixture.
4. Solid material drawn as part of the aliquot clings to the walls of the pipettes. and they do not drain aceurately as a result.
5. Bacteria are in, or on, the soil particles besides being in suspension so it is praretieally (ertain that not all eolomies are broken up by the first slatings.

The errors enumerated ahove ran not be entirely eliminated but are eut down when the size of the aliquot taken is increased. As a rule, in every series of bacterial dilutions there are at least two dilutions from which platings are made. One of these dilutions is ten times another, thus, for uni-
formity and so that results obtained from either higher or lower dilutions of other materials would be more comparable, every higher bacterial dilution should be ten times the one from which it is made. Thus there would naturally be two uniform systems of making dilutions of the bacteria in soil that might reasonably be employed; either 1 ce of the lower bacterial dilution and 9 ce of sterile water to make the next bacterial dilution or 10 ec of the lower bacterial dilution and 90 ce of sterile water to make the next bacterial dilution. It would be necessary in either case to make as many dilutions as ten is a factor of the highest dilution desired.

Many investigators take one ce of the first mixture made up and put it with 99 ce or 199 ec of sterile water, making the resulting bacterial dilution one hundred times, or two hundred times as great at once.

Plate V.
To determine whether a one ce aliquot of a soil and water mixture would be as representative as a ten ce aliquot the following experiments were carried out. Dry and sieved samples were used as counts were not desired. Two acid soils were chosen, No. 1, an acid black sand and No. 2 a very acid peat. 50 grams of each soil were taken in each case, put with 200 ce of water and shaken for five minutes. A one ce portion of each mixture was taken with a one ce pipette while the mixture was still in motion and put with 99 ce of distilled water and shaken. Ten ce aliquots of the original mixtures were taken in the same manner as the one ce aliquots, put with 90 ec of water and shaken. This gave a 1-40, and 1-400 bacterial dilution of each soil. Ten ec aliquots of the 1-40 bacterial dilutions were put with 90 ec of distilled water giving 1-400 bacterial dilutions. Thuis two 1-400 bacterial dilutions of each soil were made, one on the 10 ce basis and one on the 1 ce basis. Using 10 ce
aliquots of each of these harterial dilutions and 90 ec of distilled water, $1-1$, C0 bacterial dilutions were made, and, following the same procedure, 1-46.000 hacterial dilutions were made.

When ammonium hydroxide is added to acid soil containing a large amount of organic matter the solution becomes dark colored in proportion as the soil is acid. One re portions of strong ammonium hydroxide were added to each of the bacterial dilutions made and it was found that the color produced was darker in each case where the 10 er aliquots had been taken from the original 1-4 bacterial dilutions first made up. The fact that the amounts of material soluble and insohble in water which would react with ammonium hydroxide were different in high dihutions made when 10 re aliquots were taken at the start from what they were when 1 re aliquots

Phate Vil

Were taken at the start, is ronclusive evidence that the results of working the two wats are not the same. Figure V shows the results using soil No. 1. The two bottles at the left are the $1-100$ bareterial dilutions while those at the right are the $1-4,000$ hacterial dilntions. The left hand bottle in each case shows the resiult of 1 sing 10 ce aliguots from the start. When tested in a colorimeter the depth of color of the solution in the left hand bottle of each set was about 1.5 times that in the corresponding bottle where a 1 ee aliquot wats takern at the start.

Figure Vl shows the results using soil No. 2 which was much more acid and which contained ower seren times as murh organie matter. Six of the hatelerial dilutions mathe were photographed, the two at the left being the 1-400, the middle twe the 1-1,000, sud the two at the right the $1-40.000$ haterial dilutions. 'The left hand botte of rath set is the one where 10 ere
aliquots were used from the start. The colorimeter shows the depth of color in all bottles made from the 1 ce original aliquot to be about $4-5$ of the depth where the 10 ce aliquot was taken at the start. Just as small pebbles form a large part of a small aliquot of soil that may be taken for bacteriological analysis and prevent the results from being representative, the variations in the solid material contained in small aliquots of soil and water mixtures cause a large error in high dilution hased on these aliquots.

To determine whether the differences in color in the ahove tests might he due to differences in amount of the original soil carried through as part of the aliquots rather than to representativeness of the aliquots under comparison, the bacterial dilutions of two silty loam soils which happened to be at hand were examined. Ten and one co aliquots of the 1-4, 1-40, and 1-400 bacterial dilutions were put into tared evaporating dishes, evaporated, dried in the oven at $105^{\circ} \mathrm{C}$ for two hours, and the residues weighed. The results ontsined are given in Table 1.

Table 1.

Weight of soil in 10 ece and 1 ee aliquots of soil and water mixtures made up by technic under discussion.

Soil	Bacterial Dilution 1-4		Bacterial Dilution$1-40$		Bacterial Dilution$1-400$	
A	10 ce	1 ce	10 ec	1 ce	10 ce	1 ce
	1.139	098	092	003	(0) 4	000
	1. 191	075	093	005	00:3	000
Average.	1.161	087	092	004	004	000
	1185	113	097	006	0033	000
B	1.246	103	090	006	004	000
A verage	1. 216	. 111	094	006	004	000

The weight of soil taken in 1 ec from the $1-4$ hacterial dilution represents the weight that would be in the $1-460$ bacterial dilution providing the bacterial dilution was increased 100 times at once.

The weight of soil taken in the 10 re aliquot from the 1-40 barterial dilution represents the weight that would be in the $1-400$ badterial dilution prowiding the bacterial dilution is increased 10 times at the start.

1 ce aliquots would cause .087 and .111 grams of soil, respectively, to be
present in the 1-400 bacterial dilutions. 10 ec aliquots would cause .092 and .094 grams of soil respectively, to be present in the 1-400 bacterial dilutions. The variation in these figures is not 1.5 to 1.0 nor 1 to .8 and thus would not account for the variation in the ammonium hydroxide tests on the bacterial dilutions made from soils No. 1, and No. 2. As a result of these two tests it is thought that 1 ce is too small an aliquot of a water and soil mixture to be taken as representative.

To determine whether there is more uniformity between triplicate ten ce aliquots from the same bottle than there is between triplicate one ce aliquots from the same bottle, the following experiment was undertaken. All aliquots were taken from the 1-4 bacterial dilutions of the soils used. The acid peat and the acid black sand used were the same soils used in a previous test except that they were oven dried and reground in a mill. The red silty clay is a "freak" soil, so fine that it dusts, and contains a large percentage of soluble matter. The one ce aliquots were taken first and then the ten ec aliquots were taken from the same bottle. The mixture of soil and wator was always in motion when aliquots were drawn.

Table 11.

Uniformity of 10 ce and 1 ee aliquots of 1-4 bactorial dilutions of three soils.

Soil and Aliguot	Weight of soil in aliguot			As:	Range	Range per. ce taken
	1	2	3			
Acidpeat	0.127	(1. 110.5	0.11:	0117	0.022	0.022
10 cc	1.112	1.50.5	1. 602	1.526	1).190	0.019
Acid black saml						
$1{ }^{14}$	0165	$1{ }^{1}$ (1x2	01165	0.071	0.017	0.017
10 co	0 74!	0. $7!7$	(1.842	1). 796	$0.09 \% 3$	0 0093
Red silty rlay						
1 ce	11.11	0118	01111	0.134	0020	() 020
10 ce	1 (6ic!)	1 cist	1 695	1.684	$0.02!1$	0.003

T'he table shows:

1. That the differenees between the results ohtained with triptieate 1 er alifuots anfl triplicate 10 ce aliquots vary as the type of soil.
2. That the soil in the soil and water mixtures is not acreurately aliquoted.
3. That variation betwern one er aliquots is so great that the inereasing concentration of the soil in the mixture (due to ${ }^{2}$) does not regularly increase the anount of soil in each succeeding aliquot.
4. That the increased concentration of the soil in the soil and water mixtures increases the amount of soil taken in succeeding 10 ce aliquots.

5 . That per ee of aliquot taken the 10 ee aliquots contain nearer constant amounts of a given soil in spite of 4 .

The experiments to this point having shown that a ten ce aliquot is more representative of a soil and water mixture than a 1 ce aliquot the following determinations and calculations were made to find out if, in following regular systems of dilution, the soil making up part of a 10 ec aliquot would cause more or less departure from the bacterial dilution desired than the soil making up part of the 1 ce aliquot would.

In addition to using the determinations of the soil in the 10 ce and 1 ce aliquots already given, the results from five more soils were also secured. All determinations used as the basis of calculations are given in Table III. The soil in the first 10 or 1 ce aliquot taken is used as this would be the aliquot used in making bacterial dilntions.

> Table III.

Weights of soil taken with 1 ce and 10 ce aliquots of $1-4$ bacterial dilutions of soils.

Soil.	Gims. soil 10 cc aliquot	Gims. soil 1 ce aliquot	Percentage soil in 1 ce aliquot is of soil in 10 cc aliquot.
*Acid Peat	1. 412	127	8.99
Peat.	0.274	025	9.12
* Acid Black sand	0. 749	065	8. 6 s
Black sand	0.60 s	037	6.09
Black sandy loam.	0.20 s	016	7.69
Sandy loam	0.621	045	7.25
Silty loam A	1.139	. 098	S. 60
Silty loam B.	1. 185	113	9.5.4
Yellow tight sand	0. 148	. 012	8. 11
*Red silty clay	1.669	. 141	8.45
Average			8. 25

Table IV shows the dilutions that actually would be made if uniform systems of dilution were employed. A 1 ce aliquot would be put in practice, with 9 ec of water and a 10 ee aliquot with 90 ec of water to increase the dilution ten times.

> Table IV.

Actual bacterial dilutions made with 10 ee and 1 ce aliquots of $1-4$ bacterial dilutions of ten soils.

Column headings denote bacterial dilutions desired.

[^2]1 ec aliquot plus 9 ec water to give next dilution versus 10 ce aliquot plus 90 re water to give next dilution.

soil and size of Aliguot.	Bacterial Dilution Desired.	
	1-40	1-400
Acilpeat*		
10 ce	43.72	141.1
1 ce	13.33	433.3
Lrat		
10 cc	40.68	407.6
1 ce	40.69	406.9
Acid hack sand		
10ce	41.0 R	412.11
1 cc.	4096	409.6
Black sand		
10 c\%	10.85	109. 6
1 ce	10. 510	105. 6
Blach samdy loamm		
10 ce.	111.25	10:3.2
$1{ }^{\text {cre }}$	10.21	1028.1
Sindy loam		
$10 \cdot 6$.	10.92	1092
$1 \times$.	10 (is	1016.8
Silly loam 1		
111 (${ }^{\prime}$	11.72	1189
1 ce.	41.15	$11.1 .8$
Silly loam 13		
10 cc	11.80	1197
1 'と. .	11.25	112.8
Tight yelow sand		
$\begin{array}{r} 10 \text { ce. . . . } \\ 1 \text { ce. . } \end{array}$	$\begin{aligned} & 10.20 \\ & 10.16 \end{aligned}$	$\begin{aligned} & 102.0 \\ & 101.8 \end{aligned}$
Red silly clay		
$\begin{aligned} & 10 \text { c.c. } \\ & 1 \text { ce. } \end{aligned}$	$\begin{aligned} & 12.54 \\ & 1212 \end{aligned}$	$\begin{aligned} & 428.2 \\ & 121.2 \end{aligned}$
Average 10 c	41 3\%	115. 1
Average 1 c	4115	411.5
Difference. .	0. 23	1 if

*Specifuc gravily of peat tahen as $1 . \overline{5}$ all other soils caleutaterl as having a specifle gravily of 2.5.

In the above table the volume of soil taken in the aliquot from the $1-40$ bacterial dilution is ignored when 1 ece is taken, and used as one tenth the volume taken from the 1-4 bacterial dilution when a 10 ee aliquot is taken.

The tables present evidence that the 10 ec aliquots should be taken for a chance clump of bacteria in the 1 ce aliquot first taken would cause a much greater error than the differences in hacterial dilutions calculated above.

Table V is based on the same data as Table IV. The only difference being that, as is recommended hy some, the one ece aliquot is used to increase the bacterial dilution 100 times at the start.

Table V.
Actual Bacterial dilutions made by taking 10 ec and 1ec aliquots of $1-4$ bacterial dilution.

Soil	1-40	1-400	1-4,000	1-40.000	1-400,000
AcidPeat 10 cc 1 cc . Difference	43.72	$\begin{gathered} 441.135 \\ 436.64 \\ 4.495 \end{gathered}$	$\begin{gathered} 4,411.35 \\ 4,366.4 \\ 44.95 \end{gathered}$	$\begin{gathered} 44,113.5 \\ 43,664 . \\ 449.5 \end{gathered}$	$\begin{array}{r} 441,135 . \\ 436,640 . \\ 4,495 . \end{array}$
Peat 10 cc 1 ce Difference.	40 68	$\begin{gathered} 407.6136 \\ 406.72 \\ .8936 \end{gathered}$	$\begin{array}{r} 4,076.136 \\ 4,067.2 \\ \text { 8. } 936 \end{array}$	$\begin{array}{r} 40,761 \\ 40,672 \\ 8! \end{array}$	$\begin{aligned} & 107,(613 . \\ & 406,720 . \\ & 593.60 \end{aligned}$
Acid Black Sand 10 ec. 1 cc. Difference.	41 ON	$\begin{gathered} 412.0324 \\ 410.56 \\ 1.4724 \end{gathered}$	$\begin{aligned} & 4,120324 \\ & 4,105.6 \\ & 14.724 \end{aligned}$	$\begin{aligned} & 41,20: 324 \\ & 41,056 . \\ & 147.24 \end{aligned}$	$\begin{gathered} 412.032 .4 \\ 410.560 \\ \quad 1,472.1 \end{gathered}$
Black sand 10 cc 1 cc . Difference.	40.88	$\begin{gathered} 409.6176 \\ 406.0 \\ 3.6176 \end{gathered}$	$\begin{aligned} & 4,096.176 \\ & 4,060 . \\ & 36.176 \end{aligned}$	$\begin{gathered} 40,961.76 \\ 40,600 . \\ 361.76 \end{gathered}$	$\begin{gathered} 409,617.6 \\ 406,000 . \\ 3,617.6 \end{gathered}$
Black sandy loam 10 ce . 1 cc Difference.	40.25	$\begin{gathered} 403.2028 \\ 402.56 \\ .6428 \end{gathered}$	$\begin{array}{r} 4,032.028 \\ 4,025.6 \\ 6.428 \end{array}$	$\begin{gathered} 40,320.28 \\ 40,256 . \\ 64.28 \end{gathered}$	$\begin{gathered} 403.202 .8 \\ 402.560 . \\ 642.8 \end{gathered}$
sandy loam 10 cc 1 cc Difference.	40.92	$\begin{gathered} 410.0184 \\ 407.24 \\ 2.778 .4 \end{gathered}$	$\begin{gathered} 4,100 \cdot 184 \\ 4,072 \cdot 4 \\ 27.784 \end{gathered}$	$\begin{aligned} & 41,001.81 \\ & 40,724 . \\ & 277.84 \end{aligned}$	$\begin{gathered} 410,018.4 \\ 107,240 . \\ 2,778.4 \end{gathered}$
silt Loam A 10) cc 1 cc . Difference.	41.72	$\begin{gathered} 418.8688 \\ +16.16 \\ 2.8085 \end{gathered}$	$\begin{aligned} & 4.185 .658 \\ & +.1616 \\ & 25.058 \end{aligned}$	41. SSG . SS 41, 615 280 KS	$\begin{array}{r} 118,868.8 \\ 116,160 \\ 2,808.8 \\ \hline \end{array}$

Table V.-Continued.

Soil	1-40	1-400	1-4,000	1-40.000	1-400,000
silt Loam B 10 cc . 1 ce Difference.	41.80	$\begin{gathered} 419.672 \\ 418.68 \\ 0.992 \end{gathered}$	$\begin{array}{r} 4,196.72 \\ 4,186 \ldots \\ 9.92 \end{array}$	$\begin{gathered} 41.967 .2 \\ 41,868 . \\ 99.2 \end{gathered}$	$\begin{array}{r} +19.672 . \\ +18,680 . \\ 992 . \end{array}$
Tight yeltow sand 10 cc .] ce. Difference.	40.20	$\begin{aligned} & 4020 \\ & 401.92 \\ & 0 \quad 080 \end{aligned}$	$\begin{aligned} & 4.020 \\ & 4.019 .2 \\ & 0.80 \end{aligned}$	$\begin{array}{r} 40,200 \\ 40,192 \\ \therefore 0 \end{array}$	$\begin{array}{r} 402,000 \\ 401,920 \\ 80 . \end{array}$
Red silty clay 10 cc 1 ce . Difference.	42. 5 \%	$\begin{array}{r} 42 \mathrm{~S} .154 \\ 423.28 \\ 4874 \end{array}$	$\begin{gathered} 4,281.54 \\ 4.232 .8 \\ 48.74 \end{gathered}$	$\begin{aligned} & 42.815 .4 \\ & 42.328 . \\ & 4.87 .4 \end{aligned}$	$\begin{array}{r} 428,154 \\ 423,280 . \\ 4.874 \end{array}$
Av. Dilf		2265	2265	226.5	2,265.

This table supports the data given in Table \sqrt{V}. An investigation is under way to determine upon a formula for correcting for the error caused by volume of soil that is taken as part of the aliquot.

The largest error occurs in taking the first aliquot from the $1-1$ bacterial dilution first made up. Calculations are given in Talile Vl of the effece of errors in measuring 10 ce and 1 ce aliquots on 1-40, and 1-400 bacterial dilutions.

Table VI.

Liffere of errors in medsumer on bacterial dilutions.

	Bacterial Jilutions Desired.		
	1-40	1-400	14000
Error mintis ol ce			
10 er piperte.	1010.4	1004	4,004.
1 ceppipette.		10410	1,040
Error-minus 02 ce			
10 ce pipelte.	40117	100) 7	4.0107
1 ce pipette.		108. 1	4.081
Error-minus . 03 ce			
10 cepiperte	4011	401.1	4,0]1
1 cepipette.		112.2	4,122

Table VI-Continued.

	Bacterial Dilutions Desired.		
	1-40	1-400	1-4000
Error-plus . 01 ce 10 ce pipette. 1 ce pipette.	39.96	$\begin{aligned} & 399.6 \\ & 396.1 \end{aligned}$	$\begin{aligned} & 3,996 \\ & 3,961 \end{aligned}$
Error-plus . 02 ce 10 ce pipette. 1 ce pipette.	39.92	$\begin{aligned} & 399.2 \\ & 392.2 \end{aligned}$	$\begin{aligned} & 3,992 \\ & 3,922 . \end{aligned}$
Error-plas . 03 ce 10 ce pipette. 1 cc pipette	39.88	$\begin{aligned} & 398.8 \\ & 388.5 \end{aligned}$	$\begin{aligned} & 3,988 . \\ & 3,885 . \end{aligned}$

This table shows:
That the errors in measuring which might occur in using pipettes are magnified when made in taking a 1 ce aliquot.

Table VI in Comparison to Table V.

(1) Errors of .01 to .02 of a ece that may oceur in using a 1 ec pipette (ause a larger error in the high bacterial dilutions than the volume of ordinary soil contained in the aliquot does.
(2) That the slightly larger error caused by the volume of ordinary soil in 10 ce aliquots of soil and water mixtures is more than offset by the accuracy with which the ten ce aliquots can be measured.

Adding Water to Dilution Bottles.

The water is not sterilized in the dilution bottles, because:
Water is lost from the dilution bottles if it is sterilized in them, and
The amount lost varies with:

1. The autoclave.
2. The size of the load in the antoclave.
3. The variation in hardness of the cotton plugs in the bottles.
4. The position of the bottle in the autoclave.
5. The surface of liquid exposed and the amount of liquid in the bottle.

The following tests show the results of one sterilization in the autoclave. In putting the water into the eight ounce bottles used in these tests the technic was as follows: Each bottle was weighed to the nearest decigram and 99 gms ., or 90 gms ., as desired, in excess of the weight of the bottle was placed on the
opposite pan of the balance. 99 ec or 90 ec aliquots of distilled water were measured out by means of a 100 ec graduated cylinder and poured into each bottle. In no case was the amount of water poured in more than .35 of a gram away from that desired. Water was taken out or added so that each bottle contained the weight desired.

The bottles were sterilized for 15 minutes under 18 pounds pressure of live steam and then the pressure was reduced at the rate of one pound per minute; the door being opened 35 minutes after it was first closed.

Test 1.

Two eight ounce salt mouth bottles containing 99 grams of water and two containing 90 grams of water.

All four bottles were plugged with absorbent cotton.
The results of this test are given in Table VII.

Thble VII.

$\begin{gathered} \text { Bottle } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Wt. of } \mathrm{H}_{2} \mathrm{O} \\ & \text { put in. } \end{aligned}$	W゙t. after sterilization.	$\begin{aligned} & \text { Losses in } \\ & \text { Wreight } \end{aligned}$	Wt. lost.
1	(9) ¢ ¢ m (\%	9.) $)^{\text {gms. }}$	318 mms .	313
2		(15 2 ¢m.	3.8 gms.	384
3				3 8!
1	(1) ¢\%ms.	sti.! crms.	31 grils.	314

'Test 2.

Fourteen sounce salt mouth bottles containing 90 grams of water.
Seven were plugged with absorbent cotton and seven were left unphugged. They wereset in the autoclave in secs of 1 wo. The two at the rear were numbered 1 and 2, and the two nearest the door 13 and 14 . Even numbers denote bot tles having no plugs. Experiment conducted as Test 1. Results are given in Table Vill.

Table Vili.

Bottle No.	Wt. of $\mathrm{H}_{2} \mathrm{O}$ put in.	$\begin{aligned} & \text { Wt. of } \mathrm{H}_{2} \mathrm{O} \\ & \text { lost. } \end{aligned}$	${ }_{0}$ of $\mathrm{H}_{2} \mathrm{O}$ lost with plug.	${ }_{0}$ of $\mathrm{H}_{2} \mathrm{O}$ lot without plug.
1	90	2.2	244	
2	90	6.3		700
3	90	3.7	$+11$	
4	90	8.3		9.22
5	90	3.0	3.33	
6	90	8.3		9.22
7	90	2.9	3.22	
8	90	3.7		4.11
9	90	3.0	3.33	
10	90	8.0		8.69
11	90	2.4	267	
12	90	7.6		8.44
13	90	2.5	2.78	
14	90	5.1		5.67
	Average	4.8	313	7.51

All of the bottles were left standing on the laboratory table for 24 hours. They were then weighed again. Those with cotton plugs had lost about 1.5) grams on standing, and those with no plugs had lost more.

If sterilization in the autoclave did not change the volume of water in the dilution bottle the practice should be discontinued in soil work as the bottles would have to stand on the laboratory tables for varying lengths of time.

Water could be more accurately added to the dilution bottles with an automatic pipette than it can be with a graduated cylinder. Automatic pipettes that can be easily sterilized and connected directly to the special tank for sterile water are being investigated, but cannot at this time be recommended to graduated cylinders which can be made absolutely sterile.

Shaking Dilution Bottles

Stress has been laid on the manner of holding and the manner of shaking the soil and water mixtures. The following make it necessary to emphasize shaking.

1. Variations in manner different individuals shake up materials.
2. Variation in the ease with which colonies of bacteria are disintegrated by shaking.
3. Variation in nature of different soils.

Rather than recommend shaking a certain length of time in a specified make of shaking machine the technic of shaking is given in such a way that any accidental variations introduced by different individuals will have little effect on the resulto.

In investigations with milk and food products large variations in results have been credited to differences in manner of shaking $u p$ the samples and hacterial dilutions. Dr. H. W. Conn, ${ }^{6}$ found within the last two years that variations occurring between reports from different collaborators on the same sample of milk might be due to variations in the way in which different workers carried out given directions for shaking. The rubber stoppers are put in the first set of bottles so that they may be shaken more vigorously, as it is here that colonies ought to broken up. The mmber of times specified and the lengths of time given are considered sufficient to overcome variations in carrying out the technic of shaking the barterial dilutions.

Plating

A one er aliquot of the proper bacterial dilution is put directly into the petri plate before the media is added. This is so that all the bacteria in the aliquot may have a possible chance to develop into colonies. Care should be taken to rotate the dish sufficiently to have the bacteria evenly distributed through the media. It has been our experience to have the bacteria in one ce aliquots evenly distributed throughout the media when the bacteria in 0.1 ce aliquots were chmmed together. One ce: aliquots are advised both to increase the arefuracy of aliquoting and to insure more representative aliquots.

Incubator

We do not feel justified in discussing inculators for this laboratory has an inside room over the valults where the temperature does not vary over four degrees (entigrade in the course of a year.

Reports

Reports are always mate of the mumber of batederia or the amount of material per gram of dre soil.

Pilysiological Tests and Media

Three methods of studying the activities of the soil hactoria have been mentioned together with errtain solutions for starting these tests. These methods of determining the physiological artivities are not necessarily recommended as we have uot studied them in great detail or compared them extensively with other methods. They are given to rimphasize the advisability of weighing out the aliquots of soil to be used for physiologieal tests at the same time the aliquot from which bacterial dilutions are to be made is weighed out.

The media used in the laboratory has been omitted because the technic is the same whatever the agar media used.

Note. Glass stoppered bottles such as are used in milk laboratories are not used for dilution bottles. They are not evern used where rubber stoppers
are later on put in the bottles for silt and clay are found to work up around the stoppers and cause them to stick unduly. (This holds true even when the proper stoppers are kept with the bottles they are made for.)

Summary.

(1) All apparatus used should be sterile.
(2) Fresh samples of soil are used for analysis.
(3) A 50 gram aliquot of fresh soil has been found as satisfactory as a 100 gram aliquot. 50 grams of fresh soil is recommended as the standard amount of soil to take.
(4) Dilutions are made of the bacteria and not of the soil.
(5) Fifty grams of fresh soil and 200 ce of sterile water are used as the basis of all dilutions.
(6) Each higher bacterial dilution should be made by taking 10 ee of the lower bacterial dilution and 90 ce of sterile water.
(7) Water should be added to dilution bottles after the water and bottles have been sterilized.
(8) Bacterial dilutions should be shaken long enough so that variations in carrying out the technie of shaking will be eliminated.
(9) A one ce aliquot of the proper dilution is used for plating. This is added direct to the petri dish.
(10) The procedures followed in preparing the apparatus, in mixing the soil sample, in making the baeterial dilutions, and in plating are given in detail.

References

${ }^{1}$ Special Committee appointed by Society of American Bacteriologists, at Philadelphia meeting, December, 1914.
${ }^{2}$ Noyes, H. A., Journal of American Society of Agronomy. Volume 7, No. 5.
${ }^{3}$ Brew, J. D., Paper on Use of 0.01 ee pipettes in Milk Analysis.
Breed, Rob. S. and Brew, J. D., New York Agricultural Experiment Station, Technical Bulletin No. 49.
${ }^{4}$ Brown, P. E., Iowa Experiment Station Research Bulletin No. 11. page 399.
${ }^{5}$ Conn, H. Joel, New York Agricultural Experiment Station, Technical Bulletin No. 35 , page 9.
${ }^{6}$ Conn, W. H., Reprint 295 from the Public Health Reports, August. 1915.

[^0]: *Research assistant in Horticultural Chemistry and Bactoriology.
 Research student.

[^1]: *See note at end of article.

[^2]: *Samples very fincly divided and dry.

