On the Poincare Transformation.

Toblas Dantzig.

1. Introductory.

In a memior entitled "Sur un Theoreme de Geometrie" (Rendiconti del Circolo Matematico di patermo, Vol. 33, 1912, P. 375-407) the late Henri Poincare has considered a certain type of transformations of fundamental value in Celestial Merhanics. Without giving a proof he has amounced there a gencral property of all such transformations. The proposition has since been taken up by George D. Birkhoff who in his paper "Proof of Poincare's Geometric theorem" Transartion of the American Mathemati(al Soriety, Vol. 14, 1913) has given the theorem a general demonstration. His proof lacks, however, simplicity and directuess.

In my artiole entitled "Demonstration direete du dernier theoreme de Henri Poincare" which appeated in the Fehroary issue of the "Bulletin des Sciences Mathematiques of Astronomiques." I gate an elementary, genetic proof of the proposition. I wish to reprotuce here the main features of my demonstration as well as to bring out in greater detail some points which were left incomplete in the said paper.

2. I'ointore's Throrem.

Slightly generalized* the theorem can bee stated thus:
Let T' be "terns:formation operating in a plane and haring the following properlies:
(11) It is continnons. and ons-to-ruc in the ring formed liy tiro clased curves contours (') atul (c) of which (c) is cutirely willin (C'). (Fig. 1.)
(b) It toneses the turo contours (C) and (c) invariant.
(c) It maters "ny print 11 (on (C') into "1 point IV in the pasitive sense of rotation, while the pmints t ol' (c) utponce in the opposile sense.
(d) It lukes crery poinl I' within the ring (('re) into " point P' also within the ring.
(e) It couser is areas.
(nder these consitcrations there are within the ring (G'c) at lens' two points I and J which arr left ineravianl b!y T.
3. Notatzons.

Choose at random within (c) (Fig. 1) a point O , and a half-line OX, for prote and polar axis respectively, and let
(1) $\left\{\begin{array}{l}\bar{r}=f(r, \theta) \\ \bar{\theta}=\mathrm{g}(\mathrm{r}, \theta)\end{array}\right.$
be the polar equations of the transformation. r, $\theta ; \overline{\mathrm{r}}, \overline{\mathrm{O}}$ are the co-ordinates
of any point P and its image P , while f and g are functions which by hypothesis are continuous and single valued within the ring (Cc) and on its boundaries. The same is true of the quantity
(2) $Z=\bar{\theta}-\theta=(r, \theta)$
which measures in value and sign the angle POP̄. I shall call Z the deviation for the point P . The following are properties of this function which immediately follow from the hypothesis.

The deviation is positive for any point of the inner contour (c), negative for any point of the outer contour. (Hypothesis c.)

On any ray OM there exists at least one point D for which the deviation is zero. Such a point is shifted by the transformation radially only i. e. D and \bar{D} are collinear with O.

4. The locus of zero deviation.

The locus of all points D within the ring for which the deviation vanishes has for equation
(3) $\mathrm{z}=(\mathrm{r}, \theta)=0$

I shall denote this locus by (D). The transformation exercises on this locus a central effect shifting every point D on it along the ray OD. It follows, therefore, that

If E is a multiple point of order p on (D), \bar{E} is a multiple point of the same order on (\bar{D}), and E and \bar{E} are collinear with O.

If a ray 1 touches (D) in A it will also touch (\bar{D}) in \bar{A}, and the contact is of the same order.

If (D) possesses within (Cc) a cl sed branch (u) enclosed between two rays 1 and 1^{1} the image (\bar{u}) is also closed and is contained in the same angle.

All these properties are immediate consequences of the hypothesis and definitions.

5. The Principal Branch.

Lemma A. The locus of zero deviation has within the ring (Cc) at least one closed branch (d) completely surrounding the inner boundary.

Indeed, if we regard (3) as the equation in semipolar co-ordinates of a surface S , the cylinders parallel to Oz and built on (C) and (c), will meet S in two curves (Γ) and (γ) of which Γ is entirely below the plane II while γ is entirely above. The portion of the surface contained between the two cylinders is continuous and single sheeted. S therefore, will be cut by Π in at least one closed branch completely surrounding (c). But the complete section of S by II is the locus (D), which proves the lemma.

The branch (d) may have multiple points, but if (E) be such a loop on (d), the image ($\overline{\mathrm{d}}$) will possess a similar loop ($\overline{\mathrm{E}}$). The elimination of loops on (d) will have, therefore, the effect of eliminating the loons on (\bar{d}). It is, therefore, legitimate to assume that (d), is a simple contour, as well as its image (\bar{d}).

I shall eall the curve (d) deprived of all loops the principal branch of the locus (D). If (D) possesses more than one such branch, the one "closest" to the inner boundary may be selected for the principal branch.

1 P'artiondar C'ase

1 will say that it (lowed ("ontour (K) is everyuhere convex if any ray thru () suete it in one and only one point (Fig. 1). If a contour (K) is not everywhere convex. it is clear that there exist rays which touch it. By drawing all these tangent rays it is possible to divide the contour into "convex" and concave" ases and there is a finite number of these arcs. (Fig. 2).

It is evadent from the foregoing considerations that if the principal branch is everywhere convex, this is also true of its image ($\overline{\mathrm{d}})$. In the general case by drawing the tangent ray- we simultancously divide both (d) and ($\overline{\mathrm{d}}$) into convex and concave ares.

Thes preliminaries being established, the proof of the theorem is immediate in the case when the principal branch of the zero deviation curve is feryuhere contr. Indeed (d) and (\bar{d}) must in this case have at least two real intersections, for otherwise d would be either entirely within (\bar{d}) or ontirely without. In either case. the area of the ring (d, c) could not equal that of the nog (\bar{d}, e) contrary to the hypothesis of conservation of areas. If now I is a point common to (d) and $(\overline{\mathrm{d}})$, its image $\overline{\mathrm{I}}$ coincides with I , and the propositon is proved.

The method used here to prove that (d) and (\bar{d}) intersect in at least two points, applies to the general case and discloses this fundamental fact: If the pout I is sutuated on a contcx arc of the principal branch it is certainly an bntariant point. II, however, the point I is on a concave are it may not be an invariant point, as for instance the point C in Fig. 2. The problem, therelore, reduces to showing that at least one conver arc of the branch (d) meets lts image

7. The Auriliary C'ontour.

I shall call an arre ol zoro deviation at urmal are if it is possible 10 gof from one (xtremity of the are to the other without rhanging the sense of rotation. I segment of a ray thrn () is normal if it is possible to go from one extremity to the other withont whanging the sign of the deviation. A comtour consisting of normal arrs and segments, I shall call a normal rontour.

Lemman B. It is alwa!s: possible to construct within the ring (Cc) a closed normul contour (た) completely surrounding the boundary (c) and ercrywhere convex.

I comrlence by drawing all the rays targent to the zero deviation curve both in its principal and secondary brerehcs. Tlo !ocus (D) as well as its image ($\overline{\mathrm{D}}$) is thus divided in a certain number of ccavex and concave arcs (Figs. 2 and 3). Any one of these tangent rays I_{1} touches (D) in A_{1} and crosses it besides in a number of points $B_{1}, B_{1}^{\prime} ; \ldots \ldots$. . Let $\bar{a}_{1}=B_{1} A_{2}$ be a normal
are of the principal branch the rotation being in the negative sense. Take for second "leg" of the normal contour the segment $\mathrm{A}_{2} \mathrm{~B}_{2}=\mathrm{S}_{2}$ directed inward and in which B_{2} is the first point of zero deviation encountered. B_{2} may be a point on the principal branch (Fig. 2) or on the secondary branch (Fig. 3). Selecting then for third leg the normal are $\mathrm{a}_{2}=\mathrm{B}_{2} \mathrm{~A}_{3}$ and continuing in this manner we shall finish by returning to the point B_{1}, after having described a elosed contour (K) everywhere convex and consisting of normal ares and segments only. This contou' is shown in the figures by the heavy lines; its image by heavy dotted lines.

§. Proof of Poincare's Theorem.

If \bar{a}_{1} is the image of the normal are a_{t} it is clear that \bar{a}_{1} eannot intersect (K) in any other part of it but the corresponding are Ω_{1}, for ∂_{1} and \bar{a}_{1} are contained between the same two rays 1_{1} and $1_{1}=1$. On the other hand if \bar{S}_{k} is the image of the segment S_{k}, thon $\overline{\mathrm{S}}_{6}$ will have no other points in common with the contour (K) than the point $\overline{\mathrm{E}}_{\mathrm{k}}$.

From these remarks the prooî of the theorem follows without difficulty. For if we assumes that there are no invariant points, no are \bar{a}_{1} would have any points in common with the corresponding are \bar{a}_{1}. The contour (K) would, therefore, be either entirely within or entirely without its image ($\overline{\mathrm{K}}$) and in either case the area of the ring (Kc) could not equal that of ring ($\overline{\mathrm{K}}$ e) contrary to the hypothesis of conservation of areas.

[^0]
(C)

[^0]: *In the above mentioned article Poincare states the theorem in the case of concentric circles. Birkholl also considers this case, although he remarks at the end of his article that the theorem could be extended to the case of any two convex contours with the aid of a conformal transformation. This has never been very clear to me.

