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On the Poincare Transformation.

Tobias Dantzig.

1. Introductory.

In a memior entitled "Sur iin Theoreme de Geometrie" (Rendieonti del

Circolo Matematieo di patermo, Vol. 33, 1912, P. 375-407) the late Henri
Poincare has considered a certain type of transformations of fmidamental
value in Celestial Mechanics. Without giving a proof he has announced
there a general property of all such transformations. The proposition has

since been taken up by George D. Birkhoff who in his paper "Proof of

Poineare's Geometrie theorem" Transaction of the American Mathemati-
cal Society, Vol. 14, 1913) has given the theorem a general demonstration.

His proof lacks, however, simplicity and directness.

In my article entitled "Demcmst ration directe du dernier theoreme de

Henri Poincare" which appeared in the February issue of the "Bulletin des

Sciences Mathematiqucs et Aslronomiques." I gave an elementary, genetic

proof of the j)rf)position. 1 wish to reproduce here the main features of my
demonstration as well as to bring out in greater detail some points which were

left incomplete in the said i)a])er.

2. Poincnre's Theorem.

Slightly generalized* the theorem can be stated thus:

Lei T be <i Irnnsfontialion operalittq in a pUuie and hariiig the following

properties:

(a) It is continuous and one-to-one in the ring formed by two closed curves

contours (C) and (c) of ivhich (c) is entirely within (C). {Fig. 1.)

(b) It leaves the two contours (C) and (c) invariant.

(c) It moves any point M oji (C) into a point M in the positive sense of

rotation, while the points ni on (c) advance in. the opposite sense.

(d) It takes every point P tvithin the ring (Cc) into a point P also within the

ring.

{e) It conserves areas.

Under these considerations there are within the ring (Cc) at leasi two points

I and J which are left invariant by T.

,i. Xotations.

Choose at random within (e) (Fig. 1) a point O, and a half-line OX, for

poI« and polar axis respectively, and let

,|f.f(r.O,
^^^\e = g (r. e)

be the polar equations of the transformation, r, O; r, are the co-ordinates
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of any point P and its image P, while ( and g are functions which by hypoth-
esis are continuous and single valued within the ring (Cc) and en its boun-
daries. The same is true of the quantity

(2) Z = e— = (r, G)

which measures in value and sign the angle POP. I shall call Z th« deviation

for the point P. The following are properties of this function which im-

mediately follow from the hypothesis.

The deviation is positive for any -point of the inner contour (c), negative for

any point of the outer contour. (Hypothesis c.)

On any ray OM there exists at least one point D for which the deviation is

zero. Such a point is shifted by the transformation radially only t. e. D and D
are collinear with 0.

4- The locus of zero deviation.

The locus of all points D within the ring for which the deviation vanishes

has for equation

(3) z = (r, 9) = O
I shall denote this locus by (D). The transformation exercises on this

locus a central effect shifting every point D on it along the ray OD. It follows,

therefore, that

// E is a multiple point of order p on (D), E is a multiple point of the same

order on (D), and E and E are collinear with 0.

If a ray 1 touches (D) in A it will also touch (D) in A, and the contact is

of the same order.

If (D) possesses loithin (Cc) a cl sed branch (u) enclosed between two rays

1 and i' the image (u) is also closed and is contained in the same angle.

All these properties are immediate consequences of the hypothesis and
definitions.

6. The Principal Branch.

Lemma A. The iocus of zero deviation has within the ring (Cc) at least one

closed branch (d) completely surrounding the inner boujidary.

Indeed, if we regard (3) as the equation in semipolar co-ordinates of a

surface S, the cylinders parallel to Oz and built on (C) and (e), will meet S

in two curves (r) and (7) of which r is entirely below the plane n while y

is entirely above. The portion of the surface contained between the two

cylinders is continuous and single sheeted. S therefore, will be cut by n in

at least one closed branch completely surrounding (c). But -the complete

section of S by n is the locus (D), which proves the lemma.

The branch (d) may have multiple points, _but if (E) be such a loop on

(d), the image (d) will possess a similar loop (E). The elimination of loops

on (d) will have, therefore, the effect of eliminating the loops on (d). It is,

therefore, legitimate to assume that (d), is a simple contour, as well as its

image (d).
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I shall call the curve (d) deprived of all loops the principal branch of

the locus (D). If (D) possesses more than one such branch, the one "closest"

to the inner Iwundary may be selected for the principal branch.

' .1 I'drliriilnr ('ni^e

I will say that a closed contour (K) is everywhere corivex if any niy thru ()

/ueete it in one and only one point (Fig. I). If a contour (K) is not every-

where convex, it is clear that there exist rays which touch it. By drawing all

these tangent rays it is possible to divide the contour into "convex" and

concave" ai'cs and there is a finite number of these arcs. (Fig. 2).

It 13 e\Tdenl from the foregoing considerations that if the principal branch

IS everywhere convex, this is also true of its image (d). In the general case

by drawing the tangent ray^ we simultaneously divide both (d) and (d) into

r-onvex and concave arcs.

TIk'sc preliminaries being established, the proof of the theorem is im-

mediate in tie case when the principal branch of the zero deviation curie is

everywhere convtx. Indeed (d) and (d) must in this case have at least two real

intersections, for othenvise d would he either entirely within (d) or entirely

without In either case, the area of the ring (d, c) could not equal that of the

rinff (d, c) contrary to the hypothesis of conservation of areas. If now I is

a point common to (d) and (d), its image I coincides with I, and the proposi-

tion is proved.

The method'used here to prove that (d) and (d) intersect in at least two

points, applies to the general case and discloses this fundamental fact: //

the point I is situated on a convex arc of the principal branch it is certainly an

iniarwnl point. If, however, the point I is on a concave arc it may not be

ati invariant point, as for instance the point C in Fig. 2. The problem, there-

fore, reduces to showing that at hast one convex arc of the branch (d) meets

itif xmage

7. The Auxiliary Contour.

I shall call an arc of zero deviation a normal arc if it is possible to go from

one extremity of the arc to the other without changing the sense of rotation.

A segment of a ray thru O is normal if it is j)ossible to go from one extremity

to the other without changing the sign of the de\iation. A contour consist-

ing of normal arcs and segments, I shall call a normal contour.

Lemma B. It is always possible to construct within the ring (Cc) a closed

normal contour iK) completely surrounding the boundary (c) and everywhere convex.

I comrience by drawing all the rays taiLgent to the zero deviation curve

both in its principal and secondary brr-r.ehes. The ?oeus (D) as well as its

image (D) is thus divided in a certain number of cc^jivex and concave arcs

(Figs. 2 and 3). Any one of these tangent rays li touches (D) ir Ai and crossos

it besides in a number of points B|, B'l; Let ai = BjAj be a normal
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arc of the principal braucli the rotation being in the negative sense. Take for

second "leg" of the normal contour the segment AjB-, = S2 directed inward
and in which Bo is the first point of zero deviation encountered. B2 may be
a point on the principal branch (Fig. 2) or on the secondary branch (Fig. 3).

Selecting then for third leg the normal arc a^ = B2A3 and continuing in this

manner Ave shall finish by returning to the point Bi, after having described a
closed contour (K) everywhere convex and consisting of normal arcs and seg-

ments only. This contour is shown in the figures by the heavy lines; its image
by heavy dotted lines.

•5. Proof of Poincare's Theorem.

If ai is the image of the normal arc ai it is clear that §,1 cannot intersect (K)
m any other part of it but the corresponding arc ai, for a.i and ai are contained
between the sane two rays li and li = 1. On the other hand if Sk is the image of

the segment Sj^, then Sk will have no other points in common with the con-
tour (K) than the point Bk. ^

From these remarks the proof of the theorem follows without difficulty.

For if we assume that there are no invariant points, no arc ai would have any
points in common with the corresponding arc ai. The contour (K) would,
therefore, be either entirely within or entirely without its imago (K) and in

either case the area of the ring (Kc) could not equal that of ring (Kc) con-
trary to the hypothesis of conservation of areas.

*In the above nientioned article Poincare states the theorem in the case of con-
centric circles. Birkhoff also considers this case, although he remarks at the end ot
his article that the theorem could be extended to the case of any two convex contours
with the aid of a conformal transformation. This has never been very clear to me.
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