'I'lie Mathematics of Haul.

H. O. Garman.

Haul or the average distance earth is moved when taken from excaration and placed in embankment has heen the source of much discussiou at different times for many years. For a review of the literature on the subject, "Overhanl." the writer will call attention to the "Proceedings of the American Railway Engineering and Maintenance of Way Association," for 1906 , vol. 7 , pages 357 to 428 . Among the contributors to the subject will be found Italians, French and Germans, but it seemed to excite more interest among our American engineers.

The methematics of haul deals, of course. with the methods of computing haul and overhaul, but it is the pmope here to discuss more particularly the means for locating the center of mass. These centers of mass may be located by any one of four methods, two algebraic and two graphical. All four methods for locating the center of mass fail completely for the volumes adjoining the grade point mess several extra intermediate sections are taken.

In all the calculations a close rapid approximation was used at these points

When the ground was a plane surface, the volume next the grade point was assumed at least a wellge, and the center of gravity then taken of the length of the wedse from its base. When the ground was a parabola in longitudinal section, the center of gravity was taken $\frac{3}{3}$ of the length between section and grade point from the section.

The four methods of computation were carried on under the conditions of the three gencral types of profile, i. e. :

Case I, all four methods of computing haul agree perfectly.

f ase II. Under this condition the four methors of computing hat give their widest variance.

The above tigure is cose 111, and shows the sround a porabola in longitudinal section. This case most nearly eoncides with the actual conditions, for hath, of any of the three cases, and any rariance disconered here in the results of the four methods are about what would oerell in actuall practice, while those discorered moter cose II are limiting values.

It being the object of the writer to discorer the greatest variance that conld oceur, thus obtaining limitins ralnes, most of the computations were mader Case II, with a few test investigations muler C'ase llI, to obtain ralues that would be encomntered more often in practice.

Method No. 1 depends umon the gencral form that the conter of srarity of individual prismoids is located a distance from the mid-sirtion to Ward the larger section it fistance

$$
\mathrm{X}=\frac{1 \mathrm{~A}-\mathrm{A}^{\prime}}{\mathrm{f}^{\prime} \mathrm{A}-\mathrm{A}^{\prime}} \text { and Haul }=\frac{\sum \text { Moments }}{\text { SVolumes }}
$$

For all practical purboses it is exact.

Methor No. 2 depeuds upon the general form that the center of gravity of each individual prismoid is located in from one end a distance equal to

$$
\mathrm{X}_{\mathrm{A}^{\prime}}=1 \frac{\mathrm{~A}}{\mathrm{~A}+\mathrm{A}^{\prime}}
$$

That is to say. it is located inversely proportional to the end areas, and

$$
\text { Haul }=\frac{\text { עMoments }}{\text { SYolumes. }}
$$

It gives results always in faror of the contractor and on very short hanls is rately in error to exceed say 3.0 per cent, and on long hauls rarely if every exceeds 0.5 per cent.

Method No. : depends upon the general proposition that the position of half mass point is apmoximately the position of the center of mass and sraphically looks like tigure below.

Haul equals the mean length of the two sides of the given tropezoid and the pay haul eqmals the aera of the tropezoid. This method gives results always in faror of the contractor and on very short hauls is rarely in error to exceed say 4.0 per cent., and on long hauls rarely in error to exceed say bio per cent.

Method No. \& the last one treated in this report, depends for its results upon the area of the mass diagram.

The pay haul is equal to the area of the rectangle which has for its base the haul, and its altitude the total yardage or maximum ordinate, the product of the two being also the area of the mass diagram.

If the points are connected by a curved line it will give practically the true result. but if the points of the diagram are connected by straight lines as is recommended by most engineers, and as was done here, it gives values always against the contractor; on short haul being in error as high as 6 per cent., and on long haul about 1.0 per cent.

Final summary in tabular form:

Number.	Method.		Max. Error in \%.	
	General Form.	Center of Gravity of Individual Prismoid.	Short Haul.	Long Haul.
No. 1.	Haul $=\frac{\Sigma M}{\Sigma V}$	$X=\frac{1}{6} \frac{A-A^{\prime}}{A+A^{\prime}}$	Correct (Practically).	$\begin{gathered} \text { Correct } \\ \text { (Practically) } \end{gathered}$
No. 2.	Haul $=\frac{\Sigma M}{\Sigma V}$	$X_{A}=1 \frac{A}{A+A^{\prime}}$	+ 3	+ 0.5
No. 3.	Haul $=$ Length of chord through middle of Maximum ordinate.		$+4$	+ 6
No. 4.	$\text { Haul }=\frac{\text { Total Area Diagram }}{\text { Total Yardage }}$		- 6	- 1

