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Lines on the Pseudospheee and the Syntractrix of Rev-

olution.

E. L. Hancock.

INTRODUCTION.

Consider two surfaces of revolution S and Si generated by the revolu-

tion of the curves C and Oi about the Z axis. Oi is formed by taking on

the tangents to O distances equal to the constant-k^ times the length of the

tangents. The length in each case is measured from the z-intercept toward

the point of tangency. Let O = O be given by z = f(u), then Ci — O will

be given by.

zi = (L — l)uif'(Lui) 4- f(Lui)

where L = 1 k^ and the equations of transformation from S to Si are,

u = Lui
(1)

V ^ Vl

When the length of the tangent to the curve O is constant, as in the

tractrix, the curve Ci is the syntractrix (see Note), and the surfaces Sand Si

are therefore the pseudosphere and the syntractrix of revolution.

What follows is the study of lines on these surfaces. The geodesic

lines on the pseudosphere have been studied by means of lines in the plane.

This surface being one of constant negative curvature (—1) may, accord-

ing to Beltrami (see Note 2), be represented geodesically by a system of

straight lines in the plane.

Much of the work outlined here for geodesics^on the pseudosphere may be

found in Darboux, Theorie des Surfaces, Vol. Ill, and is given here only in

the way of review and for completeness.

The claim made for the originality in this part of the work is in (1)

the classification of the geodesic lines and the study of certain systems of

geodesic lines and their corresponding lines in the plane; (2) the transforma-

tions of the system of circles into straight lines by making use of the sphere,

Note 1.—Tlu- syntractrix is defined as the curve generated by taking a constant dis-

tance on the tangents to the tractrix. Peacock, p. 175.

Note 2.—Beltrami, Anuali di Matematica. Vol. 7, p. 185

Bianchi, Lukat, Differential—Geometrie, p. 436.
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as indicated: (3) the study of the asymptotic lines and the loxodromic lines

on the pseudosphere and their representations in the plane.

In the second part of the work the lines on the syntractrix of revolu-

tion are studied. This work so far as I know has never been done before

In it I have worked oii^ the equations of the geodesic, asymptotic and loxo-

dromic lines. These have been studied in particular by classifying the

surfaces Si according as d = 2C, where C is the length of the tangent to

the tractrix and d the constant distance taken on that tangent. Wlien

d = 2C it happens that the geodesic lines on Si are all real and that the

geodesic lines for d 20 are real or imaginary according as r^ ki k I .

The loxodromic lines are represented in the plane by the same system

of straight lines as the loxodromic lines of the pseudosphere. The draw-

ings are given for the sake of clearness.

CHAPTER I.

Geodesic Lines on the Pseudosphere.

Taking the equation of the tractrix in the form.

X =r C cosh.-'c y — (C- — _v-)i - we get for the given surface,

X := U cos V (2)

y = u sin v

z — C cosh.-ic u — (C- — u-')i 2

and the fundamental quantities of the Gaussian (see Note 1) notation are.

E = C2 u2, F ^ 0. G = u2, D = (C2) (u(C2 — u2(i 2), D' = 0,

D" = —u(C2 — u2)i 2, K = — 1.

Using the method of calculus of variations as developed by Weier-

struss (see Note 2) to obtain the equations of the geodesic lines, we have

to minimize the integral,

I = j'^ (Edu= - 2Fdudv -f Gdv=) i =dt
.' to

= j'J^((C=u' =
) (u^) + u=v'2)i Mt = /to^'^^

Legendres condition for a minimum is Fv — (d dv)Fv' r=r where

( Fv) = (rSF) (i?y) and Fv' = (dF) (<V).

Here Fv = 0, so that we get as the equations of the geodesies

Fv' = (u=v') ((C=u- u=) - u-v'-)' - = x (3)

Where oc is the constant of integration.

Note l.—Bianchi, Differential-Geometrie. pp. 61 and 87.

Note 2.—Kneser, Variationsrechnung-.

Osgood. Annals of Mathematics. Vol. 2, p. 105.
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In considering these curves two cases may arise, (1) when oc = 0,

(2) X. it 0. Case (1) when oc = 0, either u = or v' = 0. But u±
hence v' ^= and so v = constant. That is tlie meridians are geodesies.

Case (2) when x - 0, (3) becomes

V = (O au) (u= — oc -(\ 2+ .:; (4)

This may, however, be put in a more convenient form, since in the present

case the geodesic lines v = constant all meet in a point and the curves

u = constant form a system of geodesic circles — tlie orthogonal trajec-

tories of the meridians. Under such conditions E may be equated to unity

(see Note 1). The new us is then given by the relation ua = I (E)\/Mu.

Hence u = e"'^ c. Replacing in (4) u by its value just found the equation

of the geodesic lines becomes

v= (O, X )(1 — oc 2e_2u c)i 2-^/3 (see Note 2) (6)

This equation may be used to determine the allowable values of oc

and ;>. The constant /? being additive has no effect except to turn the sur-

face about the z axis. Thus a geodesic line given by one value of /? may
be made to coincide witli one given by another value of :3 by revolution

about the z axis, x remaining constant. ,3 may vary from — xi' to + x

.

From (5) it is seen tliat the lines are real or imaginary according as

X 2e-2u,'c = 1,

(1) Let x'2e-2" c >I, then 1 x
| >e» <-.

But for the pseudosphere u, C log C so that the geodesies will be imagi-

nary when I X
I

O. (2 & 3). Let x -e— =" c — l, then | x |
= e"/c.

Hence
i

x 1 == O gives real geodesies.

Equations (5) may be transformed into

X 2(v2 -|- O^e-^" c) — 2 ,3 x'-v -f- (
,^-.x - — O^) = which when

v^ ± 02e-2"/c ;= y

v = x (6)

may be represented in the plane by the straight lines,

y = 2,/3x — (.^2 — 0^ X 2) (7)

(6) may be broken up into two transformations

(a) V := X
Oe-", c (8)

Note 1.—Knoblauch, Theorie der Krummen Plachen. p. 133.

Note 2.—Bianehi, p. 419.
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which transforms S conformally on the plane so tliat the geodesies lines

go over into the circles,

(X — /3|2 ^ y2 = C2 cc
= (See Note 1)

and (b) j=(j— x2)V2 )

^g^
X =1 X I

which changes the circles into the straight lines,

J = 23x - (i^-i- C2/(x 2
(10)

By (9) the x axis goes into the parabola x^ = y and all the lines y = con-

stant go into the parabolas x^ ^= y -|- constant. The '.vhole upper part of

the plane is represented inside the parabola x^ = y. The points on the

lines X = constant are moved along the lines. The origin is the fixed point

of transformation.

Circles concentric at the origin correspond to lines y "= constant while

every system of concentric circles on the x axis goes over into a system of

parallel lines. A system of circles given by (8) passing through a point

corresponds to a system of lines tlirough a point. A system of circles with

the y axis as radical axis

x2-f y2 _2,3x + k2 =

and their orthogonal trajectories,

x= + y2—2hy = + d2 (See Note 2)

corresponds to a sheaf of lines and a sheaf of conies.

The geodesies v = constant correspond to the lines x = constant i. e.

to the diameters of the parabola x^ =r y. The entire real part of the sur-

face S is represented in the xy—plane by the strip y = y =i C/e

and in the xy—plane by the strip included by the curves x^ = y — C
and X- ^ y — O- e^ The circles of (8) tangent to the line y = O e go over

into a system of straight lines enveloping the parabola x- = y — C^.e^

Since the representation given by (8) is conformal it is interesting to

note that the lines y == constant may be considered as the envelop of a

system of circles of constant radii and centers on the x axis given by the

equation,

(x-/3)2 + y2 = CVk =

corresponding on the surface to the geodesies,

v= + C2e-2"'c_23v +(;3= — C^ k^) =0 0<k = e

Note 1.— Bianchi, p. 419.

Note 2.—Salmon's Conic Sections, p. 100.
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These may be regarded as a system of geodesies having as an envelop the

geodesic circles u = ki 0<ki=C. A system of concentric circles with the

centers at any point (e, 0) on ox gives the geodesies

v2 -f C2e-2" c _ 2ev -f e^' — C/oc ^ =
If X ./3 = O we get a system of circles through the origin

x2-|- y2 — 2;3x =
which correspond to a system of geodesies through a point. In this ease,

however, the point is not a real point of S.

A system of circles with the centers on ox and passing through a point

on the line y — k, O e<k<C envelops a unicursal quartic of the form,

Ay- ^ A,x2 + A,x==y2 + 2A 3X =y -f 2A ,xy ^ + 2A ,xy =r

This system of circles corresponds to a system of geodesies through a

real point and the quartic curve to the geodesic envelop

e-2„/c(A-<- A,v- + 2A,v) -1- e-" c(2A30-iv2 + 2A5O-1V) -p (Ai/O2)v2=:0

In this case the circles have a second common point on the line y= — k

so that the quartic envelope (which in this ease is imaginary), having four

nodes, breaks up into two circles which are themselves curves of the sys-

tem and therefore correspond to the geodesies of the surface.

The orthogonal systems cf circles,

x2 + y2 — 2;3x-r b^ =zO

x= + (y — h)= = h2 -4- b^

having the radical axis correspond to the geodesies

v= + C=e-^-" c — 2Jv + b- =

and their orthogonal geodesic circles

V' + O^e--" c — 2hCe-" c + b^ =

These may be such that the limiting points of the circles are real and

distinct, coincident or imaginary. It is interesting to note that this sys-

tem of circles, which in so many problems in applied mathematics repre-

sents lines of flow and equipotential lines may be mapped conformally on

the pseudosphere in such a way that the lines of flow and the equipoten-

tial lines are the geodesies of a system and their orthogonal geodesic cir-

cles.

Another straight line representation of the geodesic lines of the sur-

face S.

[10—18192]
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If we project stereographically upon the sphere

£2 -f ^2 -f (C — 1 2)2 = 1 4

whose south pole is the point (0, 0, 0) and whose north pole is the point

(0, 0, 1), the circles given by the transformation v = x, Ce—" c=y we shall

have the upper part of the xy—plane represented conformally upon the

hemisphere Lbd — O. The x—axis goes into the great circle Lbd and the

I

Fig. 1.

circles at right angles to o—x go into circles at right angles to Lbd.

If now we project orthogonally upon the plane Lbd we shall have the

representation in question as chords of Lbd. Since ^' n C are the co-ordin-

ates of the sphere we get as the equations of transformation from the plane

to the sphere,

x=( ? )/(l -C )

y= ( ,/)(!_: )

This gives for tlie circle

x= + y- — Vx -h p — C- Qc 2 =
the plane

(1 _ p -j_ c^ a 2) : — 2 3 = + ,32 _ 0= QC 2 =
which is independent of // . It therefore represents the trace of the plane

on the plane // = and hence the required straight line in the 5 C —plane.
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The equations of transformation from the plane xy to the plane 5 T —plane

are,
x = ( o (1 -:

)

y = (( : (!-:))-( r-} (1-: )')'/'

and the equations of transformation from the pseudosphere to this plane

are,
v= + c^e-^" c = ( : ) (1 — :

)

Discussion op the Transformation.

The entire upper part of the xy— plane is represented inside the circle

p -\- r- - : =
The circles x - -j- y " — 2/3s + /^ ^ — C ^ ac - ^= become the straight lines

(a = — -i-x - + = ) : — 2 -)'x - ^^- ,>2x 2 _ (32 -_

The straight lines y ^ k go into a sheaf of conies,

(k2 -J- l)r- — (2k2 + 1); -^ ^^2 + k^ irz through the point

(0, 1). And since — (k- - 1) is always negative the conies are all ellip-

ses. The real part of the pseudosphere is therefore represented in the area

included between the ellipses corresponding to the lines y == C and y = C/e.

All the ellipses are tangent to the cir-

cle at the point (0, 1) and have their foci

on the C—axis. The circles concentric at

the origin become the lines C = constant,

chords parallel to the £—axis. The system

of circles with centers on o—x and pass-

ing through the point a,b goes over into

the system of straight lines through the

point

; = (a) (a^ +b- + 1)

:= (a- + b2)/(a- + b^ + 1)

(2) Two such systems properly related and

Fig. 2. having the point (a,b) on the same line

y ^= b go over into the two projectively related sheaves of lines whose cor-

responding rays intersect on the conic corresponding to y = b. In par-

ticular, in case the points (a,b) are on the x—axis the conic becomes the

circle o—b and the corresponding rays are at right angles. Circles with

the centers on the x—axis and of equal radii go over into the straight lines

enveloping an ellipse. The line x = goes into f = the points being

moved along the line. The origin is the fixed point of transformation.
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Asymptotic Lines on S.

The asymptotic lines ou the surface are defined by the equation

D du2 + .2D'du.dv + D"dv2 =r (See Note 1) (12)

This becomes for the surface S,

C -h (O^ — e2" c) 1 2 = e" ce(+v + j3) (13)

and by (8) becomes in the x—y plane

y = — (y'-l)' ' + e(+x + J) (14)

LoxoDROMic Lines on S.

The differential equation of the loxodromic lines of a surface are

given *by
((E) 1 2(G) ^ 2) (du/dv) = tan a: (15)

Where x is the constant angle which the curves make with the curves

V := constant. For S (15) becomes,

(Cdu u^) = 4- tan ac .dv.

Hence tan x.uv + kjU-j-O =
This by the relation u = e"' c becomes,

tan X .e" c v + k jC" c -(- C = (17)

which by (8) gives,

y =: — tan x.x — k, (18)

This is a system of straight lines parallel to the line

y = — tan x .x

and so a system of lines making a constant angle with the lines x ^= con-

stant. And this is as it should be since the geodesic lines v = constant go

over into the lines x = constant by the same transformation.

By selecting lines from different systems of loxodromic lines we may

envelop any geodesic except the meridians. This may be seen by changing

(17) to tlie form,

x sin X -j- y cos x -|- k j cos x ^^

Where if k
i
and cos x cliange so that k , cos x = constant we get a sys-

tem of lines enveloping a circle with the centers at the origin. This cor-

responds to the loxodromic lines on the surface enveloping a geodesic.

*Bianchi, p. 109.
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CHAPTER II.

Lines on the Syntraotrix of Revolution.

Taking the equation of the syntractrix in the form,

x=:(d2 — y2)i
2 + C cosh-' (d/y) (19)

the surface S is given by,

X = u cos V ~|

y = u sin v l (20)
z = — (d^ — u^)' 2 + Ocosh-Md u) J

or we may transform the equation of the tractrix by

y=(C/d)y, \ on
x = x, + ((d-C) d)(d=-yf)V/2 I

^^^^

Giving as the relation between the surfaces S and S
^ ,

u ^ (c d)Uj

V = Vi

In this work O represents the length of the tangents to the tractrix and

d the constant distance taken on tliese tangents to get the syntractrix.

Hence d = constant . C

We get for the fundamental qualities

:

E, = (u2 — Gd)V(u='(d2 — u2)) + 1, F^ = 0, G, =u= and

D, — (u-(d2 — 20d) + Cd3) (u(d2 — u^)^ 2)

D'j = ,D"i = (u(u2 — Cd)) (d2 — u2)i,2 (22)

K, = ((u- — od)(u2(d2 — 20dj4 Cd^;) ((d- — u2)(u2(d= 2cd) + O-'d-)

(Above equation is number 23 and is the equation of the Gaussian cur-

vature. )

When C = d , (23) becomes —1 or the curvature of the pseudosphere.

When C = d 2,Ki becomes (2u^ — d^) (d- — u^)

Since for the surface d =i u the denominator is always positive and the

numerator is positive or negative according as

2u2 — d2

That is, according as u >(d/(2)\ ^) and u .
— (d)/((2) ' -') or — (d ((2)',-)

< u < d/((2)' '')
. For u = + d ((2}'r^)

, Kj = 0. This means tliat for

the particular surface S ^ defined by d = 20 the Gaussian curvature is zero

for the circles u = constant, given by taking the distance d on tlie tangent

whose inclination to the z—axis is - 4 or (3-) 4. Tangents to the tractrix

whose inclination to the z axis is something between -4 and ySn-) 4 give

the cun^es u = constant along which the surface have a negative curvature.



150

When C d 2 we have from (23) K, positive, negative or zero according

as (u- — cd) = 0. Bnt G <d 2 gives Cd d- 2, so that u=(Cd d=, 2 is

the condition for the positive curvature. Tlie curvature is zero or negative

when u^ = cd d= 2 (u-id^ — 2Cd) -j- Od^ = giving the imaginary values

foru). This shows that the tangent line to the tractrix which gives the

parabolic circle has a different slope than in the case where d = 20, since

in this case u;d<:(2) ' ^ 2 ^ i_ e. sin (2) ' - 2.

When d < 20 we might consider three cases viz., O ; d 20 , O = d

or 0>d. It will only be noted here that when O = d the surface S^ is the

same as the surface S and K^ is therefore — 1.

In any case u='— Od = gives the valves of u for which tlie tangent

line to the curve O is parallel to the u—axis.

Geodesic Lines on S^

Using the method of the calculus of variations as outlined in Ohapter I

we get for the geodesic lines on the syntractrix of revolution,

Fv'=z(u'dv) (Ejdu^ -f G,dv-)' - = r

Here two eases may be considered according as

r = or r r^

( 1 ) When r = , then either u = or dv = . But u — , hence dv =
and therefore v = constant. That is the meridians are geodesic lines,

(2) When r = we have

dv=i ((r u2)(u2(d= — 2Cd) + 0=d = )' = ((d- — u^^r^ — u-)\ ')Av

(The above equation is number 24.)

To reduce tliis expression on the riglit liand side to a convenient form sub-

stitute,

u2(d2 — 2Cd) + O^d- = (C=d=t2) (t= — 1) (25)

This may be written u^k + kj = (k^tv) (t- — 1) for convenience then,

dv= (—k^ -r t= dt) ((kr= + k J^ . (kd- + kj' - ((at-—1) .

(bt= — 1))^ -') (26)

Where a.= (kd^) (kd^ + kj) and b = (kr-) (kr- + ki)

When r ± we may consider two cases

When r = d and r ± d

When r ^ d equation (26) becomes,

(iv= (—k^ ^djdt) (kd= + k,(at= — 1)) (27)
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so that

v=(—k^ =d( (a(kd= + ki)) (t + 1 2(a)' nog((a)> =t— 1) ((a) ', ^t^l) + (5

(28)

Eliminating "t" between (25) and (28) we hare the the geodesic lines for

r = d given by

— (u^k + k,)' = (kd2 + k,)i 2 d(u-'k+ k,)i -'-uikd-'+ k , ' ^ _^ r5

V := log
u.d 2d2 d(u2k+kj» =+ u(kd =+ k,) ', ^

(The above equation is equation 29.)

When r — d (26) gives rise to an elliptic integral for the reduction of

which we recall from the general theory of elliptic integrals. (See Note 1.

)

R(x) = Ax^ + 4Bx3 + 6Cx- + 4B'x + A'

g2 = AA' — 4BB^ + 302

g3 = ACA' + 2BCB' — A'B^ AB'-' — C^

In this case we have.

R(t) = abt^ — (a+b)t- + 1

g, = ab + (a+b)= 12

g3 = (_ab(a+b)) 6 + (a+b):* 216

We also have

R'(t) :=:4abt3- 2 a+ b t

R''(t) = 12abt= — 2(a+ b)

Substituting in (26)

t = .^ + (1 4R'(f)i (pu — 1 24R"(0) (See Note 2) (30)

Wliere - is one of the roots of R(t) ;= 0. In this ease take f ^ 1 (a) '/^

then, R'(l (a)' =) ^ (2(b—a) i (a) ^ ^

W (1 (a)i -) = 2( b — a)

So that (30) may be written,

t = l (a)' - + ((b-a) (2(a)"-)) (pu-pv)

when pv ^ (1 12) (5b — a) and therefore

abt= = b + (b(b—a)) (pu — pvi + (1 4)((b(,b -a) =) (pu — pv)-

Recalling now that,

(p'v) = = 4p3v - g^pv — g3 (.31)

p^'v = 6pv — 1 2 g, (32)

and also,

(p'v)
2

' (
pu — pv ) 2 4- (pu—p"v) / ( pv) =

p(u + V) +p(u— V) -2pv (.33)

Note 1.—Klein, Modiilai", Fuiictioueii, Vol. I, p. 15.

XoTE 2.—Enueper, Elliptisclie Functionen, p. 30.
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We get in the present case,

(pV)2z=: ((b(b—a)=) 4

p'^v = b(b—a)

Equation (26) may be written,

v= ((-k^ =r ) ((ab(kr-+k,)V2)(kd=+k, ^ -) .

("(b = p(u+v) + p(u + V) + 2pv)bu +'S

and so

v = K((l 6)(b—a)u + (<7' (T)(u + v) + (g' a)(n + v)) + fi (34)

where K= ( — (k) i.'2)/(d(ab) V/ =)

The geodesic lines on S are then given by means of t,

u-k 4- kj = (kjt^) (t= — 1)

V = K o t) + £5

where o(t) is given in (34) and n = p-M(b—a) (2(a) ' -t — 2) + pv)

V = p-M (5 12)b — (a, 12J)

If (24) be put in the form

(du dv) = (u^ r) ((d- — u2)(r= — u = ))' (n=(d= — 2Cd) + C=d=)' -

it is seen at once that the equation is satisfied by the valnes u = constant.

Bat from the geometric consideration it is evident that, in general, the

circles u = constant are not geodesic lines since the normals to a geodesic

line must also be normal to the surface. And from figures V and VI it is

seen at once that this is only true for the circle u = d , where d C , and

for the trivial case u ^ no matter what the value of d.

The geodesic lines on the surfaces Sj may be studied if the siufaces

are divided into classes according as d =: 2C .

In the case d = 2C the general integral (26) takes the form,

V =
I

((d=ri (2a)) ((dn)'((d-' — u = )(r= — u-))

which when u = 1/t may be written as

V = — (—d2r)/2 f (t-dt)/((d2t= — 1)(tH'- — 1)

Here R(t) = d-r- t* — (d- + r=)t- + 1. It is evident that this is exactly

the same as the Il(t) of the general case if we replace d- by a and r- by b.

Taking note of this we may write the geodesic lines in terms of t

u = l;t

v = (— 1 2r) (1 6 (r-—d2)u + (crc.(u+\) + (c' o)(u-v)) + A

where u = p-H(r-—d2)/(2dt—2) + pviand v + p-'(5 --d-)/(12). In this

case the geodesies are real for all values of r.
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In particular when d = 20 and r = d (29) becomes

V = 4- (d/2a) + (1/4) log (d—u)/(d+u) + '^

For the purpose of illustration let d = 1 then (35) becomes

V = = (d/2u) ^ (1/4) log (l-u)/(l+Ti) — <^

And since <' is an added constant we may without loss of generality let

'5 + 0.

This particular geodesic line has been drawn in figure 3. It is to be

noted that the line winds around the surface as it approaches smaller

values, and then again winds around approaching the circle u = 1. The

lines r = d = 1 are all similar to this one and may be obtained by giving

different values to '^ .

When d -20 , k = (d- — 2Cd) is positive and ab is positive and since

k, = C^d^ is always positive and we have K always real so that the geo-

desic lines on the surface Si defined by d 20 are all real.

When d < 20 , k = (d - — 2Cd) is negative and ab is positive or nega-

tive according as r^ . kj/k or ^ C-d^)/{d.- — 20d
|

So that on the

surface S j defined by d< 20 , K will be real or imaginary according as

r^^lkj/k) . Hence the geodesic lines on such surfaces become imaginary

lines when t^>
|
k,/k

|
, that is when r>

|
k^k

|
V2andr< -

|
k,/k

|
-/^

Asymptotic Lines on Sj.

From the general equation of the asymptotic lines on a surface we get

for the asymptotic lines on S,,

(u-(d= — 2Cd) + 0d3)VV(u((0d — u=)(d= — u=) 7=)) du = + dv

(The above equation is number 37).

The substitution of \i-{d^ + 20d) — Od^ =l/t2 reduces (37) to the form,

(—kdt) ((1—k,t2)((at2 — i)(bt2 — l))i 2 1_ dv.

Where k = d^ — 2Cd, k. = Od^ a =r Odk -f- k„ b = d=k + k,.

In the particular case when d= 20 (37) becomes

((d =
) (u((d- —2u-)(d2 — u2))i 2)) . du = + dv

Which when u ^ 1 t reduces to

(—d^t . dt), ((d^t^ — 2)(d=t= — 1))' 2-^4^ dv (39)

Here R(t) = dH* — 3d2t2 -f 2

R'(t) = 4dn3 — ed^t

R"(t) = 12dn- — 6d =

g, = (ll 4)d^

g,- (9 8)d''
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To reduce (89) substitute

t = (a -r (1 4R'(a)) (pu— (1 24)R''ia)) (-10)

Where a is a root of R(t). In this case take a = 1 d. Then equation (40)

may be written,

t -= ((1 d) + ((—d 2),(pn. — pv)) (-H )

where pv = d^ *

Since (p'v) ^ = ip^v — g,pv — g, — m2) V '') 2)d3 and (—p'v) pu — pv)

= ((7'/rT)(u + V) — (n' r:){\i. — V) — :^^c' <7) IV) (Note 1) we have, remem-

bering the relation (dt du) ;= (R(t))^ ^ _^ v = (—1 ((2)' -) |'((2) ' ^d +
a'

—(u + v)(ct' cr)(u — V)— 2(^7' ^)v)du 4- (K + V = (—(d—(2)' -(^''^^)(v )u)

— ((2)\ 2) 2 log (r7(u — v),,ff^u + v ) + y

( The above is equation 42.

)

Note: Schwarz. Formeln der elliptscheu Functionen, p. 13.
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r,G. - 4

The asymptotic lines in this case are then given by the equations,

u = It

v = i'(t) + <y

where t(t) is given in (42) & u = p '((Sd^— td^) (4— 4td))v= p '(d= 4)

LoxoDROMio Lines on S^

The general equations for the loxodromic lines on a surface

((E)V2 (G)' 2), du= + tan oc dv becomes in the case of Sj ((u2(d=—2Cd)

+ CM-)\''-) (u =(d2—u2)i 2) )^xiz=i + tan ex- dv which by the substitu-

tion u2(d2— 20d) + 0-d= = (C^d^t^) (t^ — 1) reduces to the form,

((20 — d)(t2dt)) ((t= — l)((d=— 2Cd)t-— (d— C)=)> = = + tan x • dv.

(Tiie above equation is number 43.) This may be put in the form,

((20 — d) (k,)i =) ((t=Ot) ((k^t*) — (k2 + l)t2 + D' - = + tanGc. dv.

(Tiie above is equation 44.

)
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Where k, — (d—C)^ and k^ = (d^ — 20d) (d—0) =

Here,
R(t == k^t^ — (k^ + l)t2 + 1

R'(t) = 4k2t3 — 2(k2 + l)t

R"(t) ^ 12k2t2 — 2(k2 4- 1)

g, = (l 12)(1 + 14k2 + k^)

g,= ((1 + k = )/(216))(l-34k2 + k*)

(44) may be reduced by the substitution,

t ^ 1 + (|k2—l),2)(pu — pv) (46)

Where pv = (
1

' 12 ) 1 5k ^—\ )

Then k^t^ = k^ + (k^k^ — In (pu — pv) + ((k^ 4)(k = — 1) 2); (pu — pvi ^

and since dt/du ^ (R t))' - we get by using (31), (32) and (33) + ^an

oc- V— (20—d) ( (k,) V 2 (k2) ) ( (1/6) (k2 + l)u + (rf' rS) (u + v) + (S'/6)

(u—V) ) + 6''
~

(46)

We have then the loxodromic lines on the surface Sj given in terms of t

by the equations,

u2(d2 — 20d) + 0^2 = (02d2t2)/(t2— 1)

V = 0(t) + ^5'^

where ?)(t) is given in (46) andu = p '( (2 (k^— 1) (t— 1) ) + pv) v — p—

^

((5k2— 1),(12))

Since kj = (d— c)^ is always positive it is to be noted that <p(t) is

always real.

In particular when d = 20 the equation, the general equation for the

loxodromic lines reduces to,

((d2 2) (u2(d2 — u2)' 2) du = + tan (X • dv ...... (47)

and therefore

(—id^ — u2)V 2/2u) = + tana- v + rf^' (47a)

and these by the substitution ((d^ — u^) '
- 2u) = y, v = x are given in the

x-y plane by the straight lines,

y = + tan ax + 'V' .... (48)

But this is the system of lines into which the loxodromic lines of the

pseudosphere may be transformed. Hence the loxodromic lines on S and

S
, 1 when d =^ 20 ) may be represented by the same set of straight lines in

the plane.

Suppose d = 20 = 1 and (^^^ = and the tanoc = 1. Then 47a becomes

( — (d2 — u2)i'2) (2u) = + V.

This gives a line on the surface from the point Uj, vj =; (1, 0) making an

angle of 46° with the lines v = constant. The line winds about the surface

as shown in figure IV.
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The surfaces S, might have been classified according as d = C. Tlie

advantages of such a classification are not apparent in the analytical work

and can only be seen from the geometry of the surface or tlie generating

curve. In the vfork as presented the pseudosphere conies in as a special

case of the surfaces S
i
when d<2G, while if the classification had been

made as above indicated the pseudosphere d ^ O would be the dividing

surface in the classification. On the whole I think the classification

adopted is to be preferred. See figures V & VI for the different types of

generating curves d>C, d=C and d<C. The cut for d O is not given,

but a general idea of the curve may be obtained by leaving off the loop in

figure V.

FfG.- J
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