Methods in Solid Analytics.

By Arthur S. Hathaway.

Define the "vector" $[h, k, m]$ as the carrier of the point $(x, y, z)=P$, to the point $(x+h, y+k, z+m)=Q$, and show that the distance and direction cosines of the displacement $P Q$ are given by functions of the vector called its tensor and unit, $T[h, k, m]=\sqrt{\left(k^{2}+k^{2}+m^{2}\right)}=n, U[h, k, m]=[h / n, k / n, m / n]$.

Interpret the sum $[h, k, m]+\left[h^{\prime}, k^{\prime}, m^{\prime}\right]=\left[h+h^{\prime}, k+k^{\prime}, m+m^{\prime}\right]$ as a resultant displacement, $P Q+Q R=P R$, and the product $n[h, k, m]=[n h, n k, n m]$, as a repetition of the displacement.

Define the linear functions of $q=[x, y, z]$ as the "scalars" or "vectors" whose values or components are linear homogeneous functions of the components of q, such as $a x+b y+c z$, etc. Hence, for a linear function $F q, F(q+r)=F q+F r$, $n F q=F(n q)$.

Hence, for a bi-linear function Fqr, $F\left(a q+a^{\prime} q^{\prime}, b r+b^{\prime} r^{\prime}\right)=a b F q r+$ $a b^{\prime} F q r^{\prime}+a^{\prime} b F q^{\prime} r+a^{\prime} b^{\prime} F q^{\prime} r^{\prime}$.

A special scalar and vector bilinear function of $q=[x, y, z], q^{\prime}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ are defined.

$$
\begin{aligned}
& S q q^{\prime}=x x^{\prime}+y y^{\prime}+z z^{\prime}=S q^{\prime} q . \\
& V q q^{\prime}=\left[y z^{\prime}-z y^{\prime}, z x^{\prime}-x z^{\prime}, x y^{\prime}-y x^{\prime}\right]=-V q^{\prime} q .
\end{aligned}
$$

If θ be the angle between the displacements q, q^{\prime}, these functions are interpreted as,
$S q q^{\prime}=T q . T q^{\prime} . \cos \theta . \quad T^{\prime} V q q^{\prime}=T q \cdot T q^{\prime} . \sin \theta ;$ and $V q q^{\prime}$ is a displacement perpendicular to both q and q^{\prime}, in the same sense as the axis $O Z$ is perpendicular to $O X$ and $O Y$, i. e., on one side or the other of the plane $X O Y$.

The use of this material is illustrated in the following examples:
$A=(2,3,-1), B=(3,5,1), C=(8,5,2), D=(5,7,11)$.

1. Find the lengths and direction cosines of $A B, A C, A D$.

Ans. $T A B=3, U A B=\left[\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right]$, etc.
2. Find $\cos B A C$. Ans. $S U A B U A C=\frac{16}{21}$.
3. Find area of $A B C$ and volume of $A B C D$.

Ans. $\frac{1}{2} T V A B A C=\frac{1}{2} 185, \frac{1}{6} S A D V A B A C=-13$.
4. Find the cosine of the diedral angle $C-A B-D$.

$$
\text { Ans. } \quad S U V A B A C U V A B A D=\frac{-1}{37 \sqrt{10}}
$$

5. Find the sine of the angle between $A D$ and the plane $A B C$.

Ans. $\quad S\left(T A D T V A B A C=-\frac{6}{\sqrt{185}}\right.$.
6. Find the projection of $A B$ on (I) and the distance between them.

$$
\text { Ans. } \quad \text { SABLCD }=\frac{19}{\sqrt{y t}}, \operatorname{SADETABCD}=\frac{78}{\sqrt{48.7}} .
$$

7. Find the equation of the line AIS.

$$
\text { Ans. } A P=t .1 B \text {, or } \frac{x-\underline{2}}{1}=\frac{y-3}{\underline{y}}=\frac{\mathrm{z}+1}{\underline{2}}(=\mathrm{t}) \text {. }
$$

8. Find the equation of the plane $A B C$:

Ans. $\quad S A P V A B A C=2 \mathrm{x}+9 \mathrm{y}-10 \mathrm{z}-41=0$.
(a) The distance from this plane to $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is SAP $C V A B A C$, or

$$
\frac{\left(2 x^{\prime}+9 y^{\prime}-10 z^{\prime}-41\right)}{1^{\prime} 18 \overline{5}}
$$

9. The vector whose tensor and components are the moments of $A B$ about C and about axes through (parallel to $O X, O Y, O Z$, is $V_{C} A A B=[2,9,-10]$.
10. The work done by $C D$ in making the displacement $A B$ is $S A B C D=19$.

Rose Polytechnic Institute,
Terre Hante, Ind.

