DISTRIBUTION OF WATER IN RICINUS

Delzie Demaree, State of Ohio, Forestry Department

The unequal distribution of water in the leaves of a plant, the greater amount being in the lower leaves, has been shown by Schweitzer ('89) for corn, Kraus and Kraybill ('18) for tomatoes, Bakhuyzen ('28) for wheat, Mme. Krasnoselsky-Maximov ('17) for Zygophyllum, and Maximov and Krasnoselsky-Maximov ('24) for Helianthus and Atriplex. Von Hoehnel ('78) was the first show a secondary maximum in the upper leaves.

This report concerns the distribution of water in actively growing plants of Ricinus communis L. in open soil on the campus of Stanford University, the experiments being conducted during September and October, 1933. Plants were of two sorts: (1) seedlings designated by "S" and (2) sprouts from a tree 20 cm . D.B.H. designated by "Sp" (table 1). To avoid errors in sampling, all leaves of a plant or sprout were collected in the field early in the morning during maximum saturation and placed in drying cans. The stems were cut into 20 cm . lengths beginning at the apex. The leaves and stems were dried at $103^{\circ} \mathrm{C}$. The water content was calculated on a dry weight basis.

The data in Table 1 indicate that the water in the leaves is very irregularly distributed. A majority of plants with leaves near the middle tiers showed greater water content than the lowest leaf. Leaves just out of bud or emerging from it show the greatest water content.

Table 2 for the most part shows that the stems increase in water content from the base to the apex.

Since this plant has very large leaves, grows over a long period, and produces leaves many days apart, it is hoped that a study may be made of the environmental conditions under which each leaf grows in the field in relation to the very irregular distributions of water.

Literature Cited

Bukhuyzen, H. L. van de Sande. Studies of wheat grown under constant conditions. 11. Plant Physiology 3:7-30. 1926.
Krasnoselsky-Maximov T. A. Daily variations in the water content of leaves (Russian). Trav. Jard. Bot. de Tiflis. 19:1-22. 1917.
Kraus, E. J. and Kraybill, H. R. Vegetation and reproduction with special reference to the tomato. Oregon Agri. Exp. Sta. Bul. 149:1-90.
Maximov, N. A. and Krasnoselsky-Maximov, T. A. Wilting of plants in connection with drought resistance. Jour. Ecol. 12:95-110. 1924.
Schweizter, P. Study of the life history of corn at its different periods of growth. Missouri Agri. Coll. Exp. Sta. 9:1-78. 1889.
Von Hoehnel, F. Über den Gang des Wassergehaltes und der Transpiration bei der Entwickelung des Blattes. Wollny's Forsch. a. d. Gebit der Agric.-Phys. 1:299-327. 1878.
Table 1．Percentages of Water in Leaves of Twenty Plants．
Reading from Top to Bottom the Water Content is Given of the Lowest Leaf to the Top Leaf．

$\begin{aligned} & \sharp \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & 7 \end{aligned}$	Cin	
	90°	
	$\infty \rightarrow$	
	10.2	
	9	
	13.8	
	ず心	
	かロ	
	극	
	चn	
	Qus	
	$\infty \sim$	
	16	
	$0 \cdot \frac{1}{2}$	
	$\therefore \%$	
	$+\underset{\sim}{2}$	
	$\infty \pi$	
	ats	
	－\％	
	范	－Noturovoco

Table 2．Percentage of Water in Stems．

¢1	
\bigcirc	웅우ㅇㅠㅜㅇ
\cdots	No
に	成问
\because	
12	
\pm	
$\stackrel{\sim}{2}$	
$\stackrel{\text { 각 }}{ }$	
7	
Q	
σ	
∞	
－	
\bigcirc	
10	
＋	
∞	
\bigcirc	
－	
8 0 0 0 0 0 8	

