## On a Class of Ruled Surfaces Generated by an Algebraic Correspondence

C. G. Schilling, Purdue University

Introduction. The $(n, n)$-Correspondence with complete symmetry between $\lambda$ and $\mu$ was first set up by Emch ${ }^{1}$ as follows:

$$
\begin{array}{cccc}
\mathrm{n}+1 & 2 \mathrm{n}+2 & \mathrm{n}+1 & 2 \mathrm{n}+2 \\
\pi\left(\lambda-\lambda_{\mathrm{i}}\right) \pi\left(\mu-\lambda_{\mathrm{i}}\right) & -\pi\left(\mu-\lambda_{\mathrm{i}}\right) \pi\left(\lambda-\lambda_{\mathrm{i}}=0 .\right.  \tag{1}\\
\mathrm{i}=1 & \mathrm{i}=\mathrm{n}+2 & \mathrm{i}=1 \quad \mathrm{i}=\mathrm{n}+2
\end{array}
$$

In this relation the parameters $\lambda$ and $\mu$ determine two geometric entities of the same kind uniquely. Furthermore, these parameters are related by (1) in such wise that an arbitrary choice for $\lambda(\mu)$ together with the $n$ values thereby determined for $\mu(\lambda)$ form an involutorial set of $n+1$ numbers. Relation (1) represents a curve of order $2 n$ and genus $(n-1)^{2}$.

In this investigation Zeuthen's formula ${ }^{2}$

$$
\begin{equation*}
\mathrm{y}_{1}-\mathrm{y}_{2}=2 \mathrm{x}_{2}\left(\mathrm{p}_{1}-1\right)-2 \mathrm{x}_{1}\left(\mathrm{p}_{2}-1\right) \tag{2}
\end{equation*}
$$

is of importance. This formula applies when there exists between two carriers $C_{1}$ and $C_{2}$ of generi $p_{1}, p_{2}$ respectively, an ( $x_{1}, x_{2}$ ) - correspondence of such a nature that among the $x_{1}\left(x_{2}\right)$ points on $C_{1}\left(C_{2}\right)$ that correspond to one point on $C_{2}\left(C_{1}\right)$ it happens $y_{1}\left(y_{2}\right)$ times that two points coincide.

## 1. The Ruled Surfaces $F_{4 n}$.

Let the parameter $\lambda(\mu)$ determine the planes of a pencil on generic line $t$ and the parameter $\mu(\lambda)$ the osculating planes of a space cubic. If $\lambda$ and $\mu$ are related as in (1), a surface $F_{4 n}$, ruled and non-developable, of order $4 n$ and genus $(n-1)^{2}$, is generated. From each point of the line $t$ three planes osculating the cubic can be drawn, and, due to the continuity of (1), all these planes will be determined. To each plane corresponds $n$ lines which lie in it. Line $t$ is therefore a $3 n$-fold line on the surface. Hence the $3 n$ lines through any point of line $t$ lie in three planes, $n$ lines in a plane.

Between the points of line $t$ and of the space cubic there is a $(1,3)$-correspondence. Then by Zeuthen's formula, (2) above, there are four coincidences. These are due to the four points where the line $t$ intersects the developable on the cubic. The line $t$ intersects four lines on this developable, and these lines are formed by the intersection of two consecutive osculating planes of the cubic. Hence, there are $n$ torsals at each of these four points, a torsal point being one in which two consecutive generatrices of the surface intersect.

The work of Wiman ${ }^{3}$ is useful in any investigation of the fundamental characteristics - multiple curve, torsals - of a ruled surface. The formulas we apply in the following are due to Wiman. The number of torsal points on the $3 n$-fold directrix is

$$
2(\mathrm{r}+\mathrm{p}-1)=2 \mathrm{n}^{2}+2 \mathrm{n}
$$

[^0]where $p$ is the genus of the surface and $r$ the multiplicity of the directrix. The number of torsal points on the surface outside of those on the directrix line is
$$
2(\mathrm{n}-\mathrm{r}+\mathrm{p}-1)=2 \mathrm{n}^{2}-2 \mathrm{n}
$$
making a total of $4 n^{2}$ torsal points on the surface.
We wish to investigate what effect the roots of $\triangle=O$, where $\triangle$ is the discriminant of (1), have on the surface $F_{4 n}$. The equation $\triangle=O$ is of degree $2 n(n-1)$ in $\lambda(\mu)$, and its roots separate into $2 n$ sets of ( $n-1$ ) numbers each, each set giving the same double root. The two sets of values, the $\lambda$-set and the $\mu$-set, given by (1) are indistinguishable. Hence the roots of $\triangle=O$ represent both sets. First, consider these roots as $\mu$-values, and let line $t$ carry the $\mu$-planes and the cubic the $\lambda$-planes. Then each of one of the above named sets of $(n-1) \mu$-planes on $t$ determines, among others, the same two consecutive $\lambda$-planes on the cubic. Thus are formed torsal points which lie on a line of the developable on the cubic. Clearly there are $2 n^{2}-2 n$ such torsal points since there are $2 n$ such sets of ( $n-1$ ) roots of $\triangle=O$. If the roots of $\triangle=O$ are considered as $\lambda$-values then $2 n^{2}-2 n$ torsal points are formed on the $3 n$-fold directrix line $t$.

These same results might have been obtained by using Zeuthen's formula (2) on the ( $1, n$ )-correspondence that exists between the points on either carrier and the lines on $F_{4 n}$. We observe that $4 n$ of the torsal points on the surface are not accounted for by the roots of $\Delta=O$. These are independent of the relation (1) and are determined by the choice of line $t$. They always occur in sets of $n$ at the four points where line $t$ strikes the developable on the cubic. They are part of the multiple curve, the $3 n$-fold directrix, but the residual double curve does not pass through them.

The torsal points of the surface not on directrix line $t$ lie on $2 n$ lines, $(n-1)$ on a line. The torsal points of the surface on line $t$ are so arranged that the torsal lines on $t$ lie in sets of ( $n-1$ ) each in $2 n$ planes on $t$.

Through the line t pass $3 n$ sheets of the surface in such a manner that the $3 n$ lines through any point of $t$ lie $n$ at a time in three planes. Exceptions occur only for the roots of $\triangle=O$, causing two of the planes to coincide thereby producing torsals as already found. Hence the surface has no double lines or stationary lines.

A generic section of the surface is a curve of order $4 n$ and genus $(n-1)^{2}$. It has $7 n^{2}-4 n$ nodes, $1 / 23 n(3 n-1)$ of which are due to the $3 n$-fold directrix line on the surface. Hence, there is a residual double curve on the surface of order $1 / 25 n(n-1)$. By a formula due to Wiman the genus of the residual double curve is

$$
\begin{aligned}
\mathrm{p}^{\prime} & =1 / 2\left(\mathrm{n}^{\prime}-\mathrm{r}-2\right)\left(\mathrm{n}^{\prime}-\mathrm{r}-3\right)+\mathrm{p}\left(\mathrm{n}^{\prime}-\mathrm{r}-2\right)-\mathrm{D}^{*} \\
& =1 / 2(\mathrm{n}-2)\left(2 \mathrm{n}^{2}-3 \mathrm{n}-1\right)-D .
\end{aligned}
$$

The number $D$ (actual double points on the double curve) is increased by 2 for each double line on the surface and by 1 each time that two torsal lines cross. Since neither possibility occurs for the surfaces $F_{4 n}, D=O$ and the genus of the residual double curve is

$$
\mathrm{p}^{\prime}=1 / 2\left(2 \mathrm{n}^{3}-7 \mathrm{n}^{2}+5 \mathrm{n}+2\right) .
$$

## II. The Rational Case.

In this case line $t$ is a triple line and on it are four torsal points where this line intersects the developable of order 4 on the twisted cubic. There is no residual double curve.

[^1]We now proceed to map a plane into a rational, ruled quartic surface in $S_{5}$ and then to project this surface into $S_{3}$ thereby obtaining the above determined ruled quartic. This method of examining a surface, by first obtaining it as a normal surface, is uscful in viewing the special properties of a surface, such as the double curve, torsals and multiple points, if any.

In the plane $\pi$ take a system of rational quartics with a fixed triple point and three fixed single points. There are $\infty^{5}$ such quartics, and any two members of the system interscet in four free intersections. Now map the plane $\pi$ by means of this system into an $S_{5}$ as follows:
$\sigma y_{i}=\phi_{\mathrm{i}}(\mathrm{x})$,

$$
\begin{equation*}
i=1,2,3,4,5,6 \tag{3}
\end{equation*}
$$

where the $\phi_{\mathrm{i}}(x)$ are the six linearly independent quartics on the four base points, Then in $S_{5}$ is obtained a rational, ruled, normal quartic surface $F$. There are two types of surface $F$ in $S_{5}$, (a) one with an $\infty^{11}$ system of directrix conics and the other (b) with a directrix line. Mapping by (3) gives type (a). A base point of order $k$ in plane $\pi$ maps into a rational curve of order $k$ in $S_{5}$. Then the base points of the system (3) map into corresponding rational curves To the sections of $F$ by hyperplanes correspond projectively the curves of the system (3). Then all sections of $F$ by hyperplanes are rational and the surface $F$ must necessarily be ruled.

The surface $F$ has $\infty^{1}$ directrix conics; any such conic is determined by one point of $F$ and no two conics intersect. ${ }^{5}$ To understand this statement consider the $\infty^{1}$ system of conics in $\pi$ on the four base points. A conic in $\pi$ maps into a curve of order 8 but from this octic splits off three lines and a cubic leaving a conic on $F$. There are $\infty^{1}$ of these on $F$, as in $\pi$, and each is determined by one point on $F$, just as in $\pi$ one point in the plane determines a conic of this pencil, and this one point maps into just one point on $F$. No two conics on $F$ intersect since no two conics of the pencil intersect in any points outside of the base points.

This surface $F$ also contains $\infty^{3}$ directrix cubics any such curve being determined by three points of $F$. All these can be obtained as hyperplane sections of $F$ residual to any given generator. This statement is clear when we consider in plane $\pi$ the rational cubics through the four base points and with a double point at the triple base point. By the mapping a cubic goes into a $C_{12}$ but from this twelve-ic splits off two cubics and three lines thus leaving a cubic. Since any three points in $\pi$ outside of the base points determine one of these cubics in $\pi$, then any such directrix cubic is determined by three points on $F$. In the plane $\pi$ any two of these cubics intersect in two free points, hence on $F$ any two of the directrix cubics do likewise. There are $\infty^{3}$ such cubics in $\pi$, hence that many on $F$. This normal surface in $S_{5}$ can now be projected from a line in $S_{5}$, and the ruled quartic we have studied in $S_{3}$ is obtained.

## III. The Dual Surfaces. $\Gamma_{4 n}$.

Let the parameters $\lambda$ and $\mu$ in (1) determine points on the generic line $t$ and the twisted cubic $C_{3}$ in $S_{3}$. Then a ruled surface of order $4 n$ and genus $(n-1)^{2}$ is generated by joining corresponding points. Line $t$ and the twisted cubic are $n$-fold directrices on the surface. A generic cross section of this surface is a curve of order $4 n$ and genus $(n-1)^{2}$. It, therefore, has $7 n^{2}-4 n$ nodes, of which $2 n^{2}-2 n$ arc due to the four $n$-fold points caused by the two directrices. Hence, the surface has a residual double curve, call it the $b$-curve, of order $5 n^{2}-2 n$.
${ }^{5}$ Edge, 1931. Ruled surfaces. Cambridge University Press.

Each generator of the surface is cut by ( $4 n-2$ ) others of which ( $n-1$ ) are at each of its points on a directrix, thus discarding $2 n-2$ in all. Then the residual $b$-curve of order $5 n^{2}-2 n$ is generated by the $(4 n-2)-(2 n-2)=2 n$ points, in which each generatrix is cut outside the directrices. As before, the roots of $\triangle=O$ may be considered as $\lambda$ - or $\mu$-values and in each case ( $2 n^{2}-2 n$ ) torsal points are determined on one of the directrices. The surface has $4 n$ additional torsals, as given by the general formula. These arise, $n$ at a time, at the four points where the line $t$ intersects the developable of order 4 on the cubic. They are on the twisted cubic and the residual $b$-curve does not pass through them.

As in the case of its dual $F_{4 n}$, this surface has no double lines, and therefore no stationary lines. A section of $\Gamma_{4 n}$ by any plane through $t$ is a curve of order $\Gamma_{4 n}$ consisting of an $n$-fold line and three sets of $n$ concurrent lines. Hence, there is a $(1,3 n)$-correspondence set up between the planes on $t$ and the lines on $4 n$. By Zeuthen's formula (2) there are ( $2 n^{2}+2 n$ ) coincidences of lines. These coincidences are torsal points on the directrix $C_{3}$, and we have already observed that along this cubic there are $2 n^{2}-2 n+4 n=2 n^{2}+2 n$ torsal points. Any plane on $t$ cuts the residual $b$-curve in $\left(5 n^{2}-2 n\right)$ points. In this plane are 3 sets of concurrent lines, $n$ lines in a set. Outside of the intersections at the vertices of the pencils, these lines intersect in $1 / 23 n(3 n-1)-3 \cdot 1 / 2 n(n-1)=3 n^{2}$. That is to say, any plane on line $t$ cuts the $b$-curve in $3 n^{2}$ points outside of line $t$ hence $2 n^{2} .2 n$ points of the curve are on line $t$. These are the torsal points on $t$ as already found.

The genus of the residual $b$-curve of order $\left(5 n^{2}-2 n\right)$ can be determined by the correspondence between the points of the $b$-curve and the lines of the surface. Each point of the curve corresponds to the two generatrices through it, and each generatrix passes through $(4 n-2)-(2 n-2)=2 n$ points of the $b$-curve, hence, a ( $2 n, 2$ )-correspodnence between points on the curve and lines on the surface. No torsal points of the surface occur off the two n-fold directrices, hence no coincidences in this correspondence. Now apply Zeuthen's formula (2):
b-curve: $\quad \mathrm{x}_{1}=2 \mathrm{n}, \mathrm{y}_{1}=\mathrm{O}, \mathrm{p}_{1}=$ ?
Surface: $\quad \mathrm{x}_{2}=2, \mathrm{y}_{2}=0, \mathrm{p}_{2}=(\mathrm{n}-1)^{2}$.
Then $p_{1}=n^{3}-2 n^{2}+1=(n-1) \quad\left(n^{2}-n-1\right)$, and this is the genus of the residual double curve. As before, the rational surface of this class can be obtained by first mapping the plane into a quartic in $S_{5}$ with a directrix line.


[^0]:    ${ }^{1}$ Emch, 1932. Amer. Jour. 54 (2) :285.
    ${ }^{2}$ Zeuthen, 1871. Math. Ann. 3:150.
    ${ }^{3}$ Wiman, Acta Math., 1895-7. 19-20:63.

[^1]:    *In this formula $n^{\prime}$ denotes the order of the ruled surface.

