On a Class of Ruled Surfaces Generated by an Algebraic Correspondence

C. G. SCHILLING, Purdue University

Introduction. The (n,n)—Correspondence with complete symmetry between λ and μ was first set up by Emch¹ as follows:

n+1n+12n+22n+2(1) $\pi (\lambda - \lambda_i) \pi (\mu - \lambda_i) - \pi (\mu - \lambda_i) \pi (\lambda - \lambda_i = 0.$ i=n+2i = 1i=n+2i = 1

In this relation the parameters λ and μ determine two geometric entities of the same kind uniquely. Furthermore, these parameters are related by (1) in such wise that an arbitrary choice for $\lambda(\mu)$ together with the *n* values thereby determined for $\mu(\lambda)$ form an involutorial set of n+1 numbers. Relation (1) represents a curve of order 2n and genus $(n-1)^2$.

In this investigation Zeuthen's formula²

 $v_1 - v_2 = 2x_2(p_1 - 1) - 2x_1(p_2 - 1)$ (2)

is of importance. This formula applies when there exists between two carriers C_1 and C_2 of generi p_1 , p_2 respectively, an (x_1, x_2) – correspondence of such a nature that among the $x_1(x_2)$ points on $C_1(C_2)$ that correspond to one point on $C_2(C_1)$ it happens $y_1(y_2)$ times that two points coincide.

1. The Ruled Surfaces F_{4n} .

Let the parameter $\lambda(\mu)$ determine the planes of a pencil on generic line t and the parameter $\mu(\lambda)$ the osculating planes of a space cubic. If λ and μ are related as in (1), a surface F_{4n} , ruled and non-developable, of order 4n and genus $(n-1)^2$, is generated. From each point of the line t three planes osculating the cubic can be drawn, and, due to the continuity of (1), all these planes will be determined. To each plane corresponds n lines which lie in it. Line t is therefore a 3n-fold line on the surface. Hence the 3n lines through any point of line t lie in three planes, n lines in a plane.

Between the points of line t and of the space cubic there is a (1,3)-correspondence. Then by Zeuthen's formula, (2) above, there are four coincidences. These are due to the four points where the line t intersects the developable on the cubic. The line t intersects four lines on this developable, and these lines are formed by the intersection of two consecutive osculating planes of the cubic. Hence, there are n torsals at each of these four points, a torsal point being one in which two consecutive generatrices of the surface intersect.

The work of Wiman³ is useful in any investigation of the fundamental characteristics-multiple curve, torsals-of a ruled surface. The formulas we apply in the following are due to Wiman. The number of torsal points on the 3n-fold directrix is

 $2(r+p-1) = 2n^2 + 2n$

¹Emch, 1932. Amer. Jour. **54(2)**:285. ²Zeuthen, 1871. Math. Ann. **3**:150. ³Wiman, Acta Math., 1895-7. **19-20**:63.

where p is the genus of the surface and r the multiplicity of the directrix. The number of torsal points on the surface outside of those on the directrix line is

$$2(n-r+p-1) = 2n^2 - 2n$$

making a total of $4n^2$ torsal points on the surface.

We wish to investigate what effect the roots of $\Delta = 0$, where Δ is the discriminant of (1), have on the surface F_{4n} . The equation $\Delta = 0$ is of degree 2n(n-1) in $\lambda(\mu)$, and its roots separate into 2n sets of (n-1) numbers each, each set giving the same double root. The two sets of values, the λ -set and the μ -set, given by (1) are indistinguishable. Hence the roots of $\Delta = 0$ represent both sets. First, consider these roots as μ -values, and let line t carry the μ -planes and the cubic the λ -planes. Then each of one of the above named sets of (n-1) μ -planes on t determines, among others, the same two consecutive λ -planes on the cubic. Thus are formed torsal points which lie on a line of the developable on the cubic. Clearly there are $2n^2-2n$ such torsal points since there are 2n such sets of (n-1)roots of $\Delta = 0$. If the roots of $\Delta = 0$ are considered as λ -values then $2n^2-2n$ torsal points are formed on the 3n-fold directrix line t.

These same results might have been obtained by using Zeuthen's formula (2) on the (1,n)-correspondence that exists between the points on either carrier and the lines on F_{4n} . We observe that 4n of the torsal points on the surface are not accounted for by the roots of $\Delta = 0$. These are independent of the relation (1) and are determined by the choice of line t. They always occur in sets of n at the four points where line t strikes the developable on the cubic. They are part of the multiple curve, the 3n-fold directrix, but the residual double curve does not pass through them.

The torsal points of the surface not on directrix line t lie on 2n lines, (n-1) on a line. The torsal points of the surface on line t are so arranged that the torsal lines on t lie in sets of (n-1) each in 2n planes on t.

Through the line t pass $\Im n$ sheets of the surface in such a manner that the $\Im n$ lines through any point of t lie n at a time in three planes. Exceptions occur only for the roots of $\triangle = 0$, causing two of the planes to coincide thereby producing torsals as already found. Hence the surface has no double lines or stationary lines.

A generic section of the surface is a curve of order 4n and genus $(n-1)^2$. It has $7n^2 - 4n$ nodes, $\frac{1}{2}3n(3n-1)$ of which are due to the 3n-fold directrix line on the surface. Hence, there is a residual double curve on the surface of order $\frac{1}{2}5n(n-1)$. By a formula due to Wiman the genus of the residual double curve is

$$p' = \frac{1}{2}(n'-r-2) (n'-r-3) + p(n'-r-2) - D^*$$

= $\frac{1}{2}(n-2) (2n^2-3n-1) - D.$

The number D (actual double points on the double curve) is increased by 2 for each double line on the surface and by 1 each time that two torsal lines cross. Since neither possibility occurs for the surfaces F_{4n} , D=O and the genus of the residual double curve is

$$p' = \frac{1}{2}(2n^3 - 7n^2 + 5n + 2).$$

II. The Rational Case.

In this case line t is a triple line and on it are four torsal points where this line intersects the developable of order 4 on the twisted cubic. There is no residual double curve.

^{*}In this formula n' denotes the order of the ruled surface.

We now proceed to map a plane into a rational, ruled quartic surface in S_5 and then to project this surface into S_3 thereby obtaining the above determined ruled quartic. This method of examining a surface, by first obtaining it as a normal surface, is useful in viewing the special properties of a surface, such as the double curve, torsals and multiple points, if any.

In the plane π take a system of rational quartics with a fixed triple point and three fixed single points. There are ∞^5 such quartics, and any two members of the system intersect in four free intersections. Now map the plane π by means of this system into an S_{ε} as follows:

(3)
$$\sigma y_i = \phi_i(x), \qquad i = 1, 2, 3, 4, 5, 6$$

where the $\phi_i(x)$ are the six linearly independent quartics on the four base points. Then in S_5 is obtained a rational, ruled, normal quartic surface F. There are two types of surface F in S_5 , (a) one with an ∞^1 system of directrix conics and the other (b) with a directrix line. Mapping by (3) gives type (a). A base point of order k in plane π maps into a rational curve of order k in S_5 . Then the base points of the system (3) map into corresponding rational curves. To the sections of F by hyperplanes correspond projectively the curves of the system (3). Then all sections of F by hyperplanes are rational and the surface F must necessarily be ruled.

The surface F has ∞^1 directrix conics; any such conic is determined by one point of F and no two conics intersect.⁵ To understand this statement consider the ∞^1 system of conics in π on the four base points. A conic in π maps into a curve of order 8 but from this octic splits off three lines and a cubic leaving a conic on F. There are ∞^1 of these on F, as in π , and each is determined by one point on F, just as in π one point in the plane determines a conic of this pencil, and this one point maps into just one point on F. No two conics on F intersect since no two conics of the pencil intersect in any points outside of the base points.

This surface F also contains ∞^3 directrix cubics any such curve being determined by three points of F. All these can be obtained as hyperplane sections of F residual to any given generator. This statement is clear when we consider in plane π the rational cubics through the four base points and with a double point at the triple base point. By the mapping a cubic goes into a C_{12} but from this twelve-ic splits off two cubics and three lines thus leaving a cubic. Since any three points in π outside of the base points determine one of these cubics in π , then any such directrix cubic is determined by three points on F. In the plane π any two of these cubics intersect in two free points, hence on F any two of the directrix cubics do likewise. There are ∞^3 such cubics in π , hence that many on F. This normal surface in S_5 can now be projected from a line in S_5 , and the ruled quartie we have studied in S_3 is obtained.

III. The Dual Surfaces. Γ_{4n}.

Let the parameters λ and μ in (1) determine points on the generic line t and the twisted cubic C_3 in S_3 . Then a ruled surface of order 4n and genus $(n-1)^2$ is generated by joining corresponding points. Line t and the twisted cubic are *n*-fold directrices on the surface. A generic cross section of this surface is a curve of order 4n and genus $(n-1)^2$. It, therefore, has $7n^2 - 4n$ nodes, of which $2n^2 - 2n$ are due to the four *n*-fold points caused by the two directrices. Hence, the surface has a residual double curve, call it the *b*-curve, of order $5n^2 - 2n$.

⁵Edge, 1931. Ruled surfaces. Cambridge University Press.

MATHEMATICS

Each generator of the surface is cut by (4n-2) others of which (n-1) are at each of its points on a directrix, thus discarding 2n-2 in all. Then the residual *b*-curve of order $5n^2-2n$ is generated by the (4n-2)-(2n-2)=2n points, in which each generatrix is cut outside the directrices. As before, the roots of $\Delta = O$ may be considered as λ - or μ -values and in each case $(2n^2-2n)$ torsal points are determined on one of the directrices. The surface has 4n additional torsals, as given by the general formula. These arise, n at a time, at the four points where the line t intersects the developable of order 4 on the cubic. They are on the twisted cubic and the residual *b*-curve does not pass through them.

As in the case of its dual F_{4n} , this surface has no double lines, and therefore no stationary lines. A section of Γ_{4n} by any plane through t is a curve of order Γ_{4n} consisting of an *n*-fold line and three sets of *n* concurrent lines. Hence, there is a (1,3n)-correspondence set up between the planes on t and the lines on 4n. By Zeuthen's formula (2) there are $(2n^2+2n)$ coincidences of lines. These coincidences are torsal points on the directrix C_3 , and we have already observed that along this cubic there are $2n^2-2n+4n=2n^2+2n$ torsal points. Any plane on tcuts the residual *b*-curve in $(5n^2-2n)$ points. In this plane are 3 sets of concurrent lines, *n* lines in a set. Outside of the intersections at the vertices of the pencils, these lines intersect in $\frac{1}{2}3n(3n-1)-3\cdot\frac{1}{2}n(n-1)=3n^2$. That is to say, any plane on line t cuts the *b*-curve in $3n^2$ points outside of line t hence $2n^2-2n$ points of the curve are on line t. These are the torsal points on t as already found.

The genus of the residual *b*-curve of order $(5n^2 \cdot 2n)$ can be determined by the correspondence between the points of the *b*-curve and the lines of the surface. Each point of the curve corresponds to the two generatrices through it, and each generatrix passes through $(4n \cdot 2) - (2n \cdot 2) = 2n$ points of the *b*-curve, hence, a (2n,2)-correspondence between points on the curve and lines on the surface. No torsal points of the surface occur off the two n-fold directrices, hence no coincidences in this correspondence. Now apply Zeuthen's formula (2):

b-curve: $x_1 = 2n, y_1 = 0, p_1 = ?$

Surface: $x_2 = 2, y_2 = 0, p_2 = (n-1)^2$.

Then $p_1 = n^3 - 2n^2 + 1 = (n \cdot 1)$ $(n^2 - n - 1)$, and this is the genus of the residual double curve. As before, the rational surface of this class can be obtained by first mapping the plane into a quartic in S_5 with a directrix line.