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THE EFFECT OF VARIATIONS OF THE FORCE FUNC-
TION UPON ORBITS OF LEAST ACTION.

Oliver E. Glenn, Lansdowne, Pa.

A unique episode in the history of astronomy resulted from a hypothesis of

Leverrier. To account for the motion of the perihelion of Mercury he supposed

there was a small planet (Vulcan) rotating between Mercury and the sun. As

late as 1905 the opinion was tentatively accepted by many astronomers that

the irregularities of motion were due to the presence in that region of a ring of

meteoric substance. In the case of the analogous erraticism of the moon's

motion around the earth Hall tested the effect of assuming a gravitational

force [x/r'
2+e

, e=0, instead of Sir Isaac Newton's function jx/r 2
. E. VV. Brown

showed (1903) that this alteration led to errors. In 1905 Einstein published

the first of his work on relativity and somewhat later an equation of the orbit

of a single planet which was soon verified for the case of Mercury.

The following postulates, which are probably the simplest possible, suffice

for the present paper and we are led to an orbital equation of a form which

includes that of Einstein as a special instance, although the postulates do not

involve us with questions of relativity.

(a) Space is euclidian. Thus the squared element of (plane) arc is

ds 2 = dx 2+dy 2
.

(b) A particle moving in a plane under the action of a central force (and

no other influences except an initial velocity) moves according to the principle

of least action.

(c) The force of attraction between a planet and the sun is of the form

[x/(.r
2+ar+^), r being the distance and a, $ infinitesimals.

I. Least action in a plane. If a particle Q is projected from a point A,

in a plane M, with an initial velocity v and is attracted toward a fixed point

O inM by a force P its motion is such that the action integral I vds is a minimum.

If m is the mass, the cartesian origin and Q the point (x, y) the equations of

motion are,

(1) mx =—Px/r, my' =—Py/r, (r = OQ)

If we multiply these equations by 2x, 2y respectively and add we obtain, after

integrating once,

v 2 =—2 (Vdr+b, (E = P/m, v = s).

Taking for initial conditions v = v () when (r, 0) is (r„, ()„) and indicating by

that the initial coordinates are to be substituted after the integration, we
/
obtain,

"Proc. Ind. Acad. Sci.. vol. 38, 1928 (1929)."



276 Proceedings of Indiana Academy of Science

(2) b = Vo 2+2f Fdr,

/vds=/;
:

y-2/Fdr+2/, Fdr^
v-+{^)

2

a

The orbit of the particle is an extremal 1 of this integral.

If we abbreviate as follows:

fvds = f
2

f(0,r,r!)de, (ri = dr/d8),

Euler's equation for extremal curves is

(3) d

L —— f.i = 0,
r

do
r

and since f is explicitly free from 6 the calculus of variations gives at once the

first integral of (3),

— —2|Fdr+b) U =C.

Substitution of u= l/r, p= du/d6, rationalization and differentiation once

with respect to 6 give the known form,

(4) d 2u 1 f I
s

|_.u = F —
d0 2 C 2u 2

v
u J

This is the equation for extremals of the type which is simplest with

reference to the theory of differential equations. It is immediately integrable

in the form,

(5) fdu 2

r r i i) i—
\
=2 I -F — -u Idu+d,

dOj J L C 2u 2 [u) J
and completely integrable in an explicit form involving quadratures.

II. Variations from the Newtonian law of gravitational attraction.

We now assume,

(6) F = [x/(r 2+ar+e),
the numbers a, [i being arbitrary but infinitesimal.

From (4),

(7) d 2u [x/C 2—+.u= .

dO 2 £u 2+au+l
We write C = l leaving [i arbitrary. The general solution of (7) with the right

hand side replaced by a constant K, is

u =A sin 6+B cos 0+K,
A, B being constants of integration, hence any integral curve of (7) is infinitesi-

mally consecutive to a conic.

If we divide numerator by denominator on the right hand side of (7) and

neglect, as higher infinitesimals, expressions of orders >2 in a, @ we have, after

integrating once,

(8)
f
du^ 2

=2t4ku 5+m 4+mu 3+nu 2+u+d], ( = 2[xU),

[dej

'Bolza, Lectures on the Calculus of Variations (1904).
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where,
k=y5

2
, t=^«fr m= ^(a2—p), n=— ^(a+f*.- 1

).

There results,

v/2^.(e+o)= fdu/y/JT.

This is in the form of a hyperelliptic integral but since terms in k, 1, m are

infinitesimal it can be evaluated in finite form. Jn fact,

J du/VU=J vAlu—V2J V^S (ku5+lu4+mu3)duH J
V~Vdu,

where,
V = nu-+ u+ d.

The method of integration by parts may be applied to each integral. If,

as ordinarily, we neglect all expressions of order > 1 in a, (3 and assume

u = Kx, K being a constant whose value is determined when the linear unit

is chosen then (8) becomes 2
,

(9) fdx) 2
2jj. 2[xd

=—% PK[xx 3— (a[x+l)x 2+—x+ •

v
dej K K2

Choose K according to the units employed and

fx=KX, d = K(E 2—1)KX, a=0, p=— 3/K-X,

and (9) becomes,

(10) dxV
2x 3—

x

2+2Xx—

X

2(l—

E

2
),

dej

Now (10) is identical with Einstein's equation for the orbit of a single planet

about the sun, M being the mass of the sun, a and E being respectively the

major semi-axis and the eccentricity, and,

x = M/r, X = M/a(l—

E

2
).

For the planet Mercury the values in terms of Eddington units are

M = 1.45, a = 5.8.10 7
, E = 0.206, X = 2.6.10- 8

.

It has been verified previously that the erratic advance of the perihelion of

Mercury is in conformity with the equation (10). The erraticism of the motion

of Venus has been explained by (10), (Eddington, loc. cit.) and probably may
be accounted for more accurately by (S).

We have therefore developed the verified theory of the motion of planets

without the intervention of relativity or of non-euclidian hypotheses, assuming

only the principle of least action and a law of attraction (6) which differs in-

finitesimally from that of Newton.

^Eddington, The Mathematical Theory of Relativity (11)23), p. 86.




