# PROGRAM OF THE SECTION ON MATHEMATICS 

Chairman: C. K. Robbins, Purdue University

1. On the foundations of geometry. Karl Menger, University of Notre Dame.
J. E. Dotterer, Manchester College, was elected chairman of the section for 1938.

# A Foundation of Projective Geometry 

Karl Menger, University of Notre Dame

We assume a system of elements denoted by $A, B, \ldots$ and two operations which associate with any two elements $A$ and $B$, an element $A+B$ and an element $A . B$. The operations may satisfy the following conditions:
I. Associativeness: $A+(B+C)=(A+B)+C, A \cdot(B \cdot C)=(A \cdot B) . C$.
II. Existence of two indifferent elements $V$ ("vacuous" element) and $U$ ("universal" element) such that for each element A we have:

$$
\begin{array}{ll}
A+V=A, & A . U=A \\
A . V=V, & A+U=U .
\end{array}
$$

III. A weakened distributive law:

$$
A+(A+B) \cdot C=A+(A+C) \cdot \mathrm{B}, \quad A \cdot(A \cdot B+C)=A \cdot(A \cdot C+B)
$$

From these assumptions we easily deduce that both operations are commutative and, for each $A$ and $B$, satisfy the condition $A+(A . B)$ $=A=A .(A+B)$. Consequently, if we have $A+B=A$ for two elements $A$ and $B$, then we also have $A . B .=B$, and conversely. If for two elements $A$ and $B$ both formulas $A+B=A$ and $A . B=B$ hold, then we call $B$ a part of $A$. The part relation defined in this way has the ordinary properties. From $C$ part of $B$, and $B$ part of $A$, it follows that $C$ part of $A$, etc.

We furthermore easily derive the formula $A+A=A=A . A$ for each $A$, by virtue of which there are neither multiples nor powers in the formulas of the algebra of geometry derived from the postulates I, II, III. We get thus: $A$ part of $A$ for each $A$; besides: $V$ part of $A$, and $A$ part of $U$ on account of postulate II. Those elements which are different from $V$ and do not contain any other parts than themselves and $V$ shall be called points. Those elements which are different from $U$ and are not part of any other element than themselves and $U$ shall be called hyperplanes. Our definition makes precise the famous first words of Euclid's Elements: "Point is that which has no parts."
$n$ points are called independent if for each of them the product of the point and the sum of the $n-1$ other points is $V$. In an analogous way, $n$ hyperplanes are called independent if for each of them the sum of the hyperplane and the product of $n-1$ other hyperplanes is $U$. These definitions yield a theory of linear independence including in particular the following theorems: If an element is the sum of a finite number of points, then it may also be represented as the sum of independent points. If two systems of independent points have the same element $A$ as sum, then the number of points in both systems is necessarily the same. We shall denote this number by $a^{\prime}$. If an element is the product of a finite number of hyperplanes, then it may also be represented as the product of independent hyperplanes. If two systems of independent hyperplanes have the same element $A$ as product, then the number of hyperplanes in both systems is necessarily the same. We shall denote this number $a^{\prime \prime}$.

If both $A$ and $B$ are elements which may be represented as the sum of a finite number of points, then the same holds for the elements $A+B=S$ and $A \cdot B=P$, and we can prove that the number $a^{\prime}+b^{\prime}$ is not less than $s^{\prime}+p^{\prime}$. If both $A$ and $B$ may be represented as the product of a finite number of hyperplanes, then the same holds for $S$ and $P$, and we can prove the number $a^{\prime \prime}+b^{\prime \prime}$ is not less than $s^{\prime \prime}+p^{\prime \prime}$.

In order to complete the theory, we need now two further postulates:
IV. If the point $P$ is part of $A$, then there exists an element $A^{\prime}$ such that $P+A^{\prime}=A$ and $P \cdot A^{\prime}=V$. If the element $A$ is part of the hyperplane $H$, then there exists an element $A^{\prime \prime}$ such that $H . A^{\prime \prime}=A$ and $H+A^{\prime \prime}=U$.
V. A monotonic sequence cannot contain infinitely many different elements, i.e. if in the sequence $A_{1}, A_{2}, A_{3}, \ldots$, each element is part of the following element, or each element is part of the preceding element, then all elements of the sequence from a certain element on are identical.

These two postulates guarantee that each element $A$ may actually be represented as the sum of a finite number of points, and as the product of a finite number of hyperplanes. Furthermore, Dr. F. Alt (Vienna) deduced from them that the number $a^{\prime}+a^{\prime \prime}$ is the same for each element $A$, namely, equal to the number of independent points whose sum is $U$, and to the number of independent hyperplanes whose product is $V$. This formula together with the previously mentioned inequalities yields the formula $a^{\prime}+b^{\prime}=s^{\prime}+p^{\prime}$ for any two elements $A$ and $B$.

We define now the dimension of an element $A$ as the number of independent points whose sum is $A$, diminished by 1 , thus $\operatorname{dim} A=a^{\prime}-1$, and set $\operatorname{dim} V=-1$. For each element $A$ the number $\operatorname{dim} A$ surpasses by exactly 1 the largest dimension of any part of $A$ which is different from $A$. We have, furthermore, the formula:
$\operatorname{dim} A+\operatorname{dim} B=\operatorname{dim}(A+B)+\operatorname{dim}(A . B)$ for any two elements $A$ and $B$.

Points are the elements of dimension $O$. If we call "straight line" each element of dimension 1 , and say that a point $P$ and a line $L$ coincide if $P$ is part of $L$, and if we add the postulate
VI. $\operatorname{dim} U=n$,
then it is easy to deduce the ordinary postulates of projective geometry of the $n$-dimensional space, except the postulate that each straight line contains at least three distinct points. This postulate is easily seen to be equivalent to the following one:
VII. For any two distinct points $P$ and $Q$ there is an element $A$ such that the distributive formula $A .(P+Q)=(A . P)+(A . Q)$ does not hold.

If we postulate, on the contrary, the distributive law VII.* $A .(B+C)=(A \cdot B)+(A . C)$ and $A .(B+C)=(A+B) .(A+C)$ for any three elements $A, B, C$ (in which case the postulates I-V may be considerably simplified), then we get a Boolean algebra of classes. Under the assumption VI, the system of elements is isomorphic with the system of the $2^{n+1}$ subsets of a set containing exactly $n+1$ elements.

