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1. Introduction. It is felt advisable to make more readily available the

formulas one finds necessary in working with series of symmetric Jacobi

polynomials. These polynomials are denoted by F(n+p,—n,(p-}-l)/2,(l—x)/2),
p— l p—

1

p
— l

Gn (p,(p+1)/2,(1—x)/2), Xn
2

'
2

(x) and, more recently, Xn
2

(x). In

mathematical literature most developments are made with two members

of the family, Tschebychef (trigonometric) polynomials, p = 0, and Legendre

polynomials, p= l. Legendre polynomials are easiest to use. Developments

can and should be made for the family rather than particular members in

certain cases.

2. History. Gauss 1 was interested in the Hypergeometric Series

«.p q(«+l) p(E+ l)

1-Y 1-2 t(T+1)

(D «(a+D • • • • («+k— 1) E(g+1) (p+k— 1)"
1-2 k 't(t+1)i (r+k-D

x

as the solution of the differential equation

(2) x(l-x)y"+[T-(a+^+l)x]y'—a^y=0.

Jacobi 2 discovered that this series terminates itself if one of the elements a

or @, which enter the series symmetrically, is a negative integer. The poly-

nomials are solutions of the differential equation, but can also be obtained by
successive differentiation of a function of x.

F(a+n —n,Y,x)

(q+n)(-n) (q+n)(q+n+l) (-n)(-n+l)
= 1+ x-f . x^+

(3) 1-T 1-2 T(T+D
(q+n)(q+n+l) • • • («+2n-l) (—n)(—n+1) • (—1)

1-2-3 • • • • n '

y.(y+D • •• (r+n-D

(4) F(q+n,—n,T ,x)

x (1—x)
t(t+1) (T+n-1) dxn

Darboux 3 and Abramescu 4 wrote extensive articles on Jacobi polynomials.

Darboux's article was the source of most of the formulas in this paper. He it

iGauss, 1812. Disquisitiones generates Circa Seriem Infinitam, Werke, 3:127.

drelle's Journal, 1859. 56:149-165.

3M6moire sur l'approximation des fonctions de tres grands nombres. Journal de Math. 1878.

4:5-60, 377-416.

4Sulle serie di polinomi di una variable complessa. Le serie di Darboux. Annali di Mathematica,
31:207-249.
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was who first extended the field of orthogonal polynomials from the real axis

to the complex plane.

3. Transformation for Symmetric Polynomials. The condition a— y=Y— 1>

where the difference between a and y is equal to the difference between y and 1

,

and the transformation of x to (l—x)/2 gives "symmetric" Jacobi polynomials.

They cause

1. Alternate coefficients to become zero, thereby eliminating much work in

calculations.

2. The recursion formula to include only terms of first degree in n. This was
oo

necessary in the proof of Cesaro summability of 2annPXn , where p is a positive

integer5
.

1

3. The range to be —1<x<1, instead of 0<x<l.

For Tschebychef polynomials a = 0, ^ = lA, the difference being Y%. For

Legendre polynomials a=Y= l, the difference being 0.

There is no reason why a cannot be greater than 1, ie. <x = 3, y = 2, or a = 5,

Y = 3. The only rigid condition the writer finds is a>— 1.

4. The Differential Equation. The original hypergeometric differential

equation of Gauss (2) is transformed to

(5) (l-x2)Xn ''-[(p+l)x]Xn'+(p+n)nXn= 0.

In modern notation a = p and y=(p+1)/2, one choosing any p>— 1. Unless

explicitly stated otherwise the formulas throughout the remainder of the

paper, including (5), all contain p, Xn denotes Xn^ (x), and x is confined to the

range —1<x<1.

5. The Recursion Formula. From the recursion formula

n+p n
(6) xXn

=
2n+^Xn+1+2n+r^Xn-i

one can get any set of polynomials by taking XQ
= 1, X

1
= x, and assuming a

value of p>— 1.

The polynomials can be obtained from (3) or (4), letting x=(l—x)/2,

a = p and y=(p+1)/2. They are also obtained from the generating function.

6. The Generating Function. Brenke's method 6 of deriving the generating

function is based on the Lagrange expansion formula 7
.

Putting the differential equation (5) in the form

1—

x

2
,
p+n „

-Xn
"—xX '+ 1--3—nXn = 0,

p+1
n n P+l n

one substitutes the coefficient of Xn
" for 4>(y), changing x to //, in the equation

y=x+t(J>(y) and obtains

l_y2

(a) y=x+t—f-.P+l
5Cowgill, 1935. On the summability of a certain class of series of Jacobi Polynomials. Bull. Am.

Math. Soc. 41: 541-549.

6On polynomial solutions of a class of linear differential equations of the second order. Bull. Am.
Math. Soc. 36:77-84, 82. 1930.

7Goursat-Hedrick, 1904. Mathematical Analysis. Vol. 1, par. 189.
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Differentiating partially with respect to x

dy t dy Or 1i+— (-2y);
dx p+1 ax dr 2ty

" 1+—

-

P+1
From (a)

r2ty2 / t \
-7T+y-(x+-^)=o.
p+1 \ p+1/

Solving by the quadratic formula and

t,

Vl—2tx+t 2

making the transformation t =———

t

—

t

ay 1 1

ax 1—ty Vl—2tx+t2'

Substituting the "characteristic function"

p-1

P =(p+l)(l-x2)
2

in Brenke's expression for the generating function,

p-1

p(y)dy (p+Dd-y 2 2
1

(7) *(x,t) =

P(x)ax YVl-2tx+t2
(p+ l)(l-x2) 2

p—

1

[

t
2— (1—2A/l—2tx+t2 +1—2tx+t 2

)"l 2 1

t2^2
) J Vl=2l^t2

r_i_ _ _i^
Ll—

x

2 (2tx—2+2Vl—2tx+t2
)J

2

(2t)P-1Vl—2tx+t2

%Jo

a
r
X

r
f

where

(p+ 1 )(p+3) (p+2n— 1)

J((p+1)/2+n) ^
f((p+l)/2)f(n+D

_P _J_

Xn
= 0(n 2 ),soa nXn

= 0(n 2
)

Xn (l)
= l,Xn (-l) = (-l)» 8

*This is shown by using equations (1) and (4), Darboux, loc. eit., p. 377, and making the trans-

ormation x=(l— q)/2, x= corresponding to £=1 and x=l corresponding to Q=— 1, a—y =y— 1.
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One also has the relation 9

Rr+p) 1

(8) 2 ' 7/
, n X r

tr = ~ — (0<t<l).
r=0|(p) [(r+1) r £

(1—2tx+t2 )
2

Differentiating both sides of (8), multiplying throughout by 21 and adding

to (8), one gets

S L — -(2r+p)X t
r =—

r=o[(]>)f(r+l) P.
+1

(1—2tx+ t
2
)

2

which one can write in the form

»f[(r+p) f(p+l) 1-t^
C9J

r:„f^TT)
(2r+|,)X

'
tr= ^1=^-

(1—2tx+t2
)

Let p = and one obtains the special generating function for the Tschebychef

polynomials
l

oo —

—

J £2

(10) 2 2[X r
2
(x)]tr = :—r, or

r=o
r 1—2tx+t 2

jo

T
r
(x)(2t)r=

i^^2
where T.M^X.T* (x)].

O.ie can now see that series (9) is the Cauchy product of series (8) and series

(10), as well as being the right hand member of the Christoffel-Darboux identity

[(n+p) Xn+1—

X

n

|(p)|(n+l) x—

1

J? [(r+p)
= ^ F7TT : (2r+p)Xr ,

when t= l.

7. Symmetric Jacobi Polynomials.

p = 0, Tschebychef Polynomials.

X (x) = l X (cos 8) = 1

X
x
(x)=x X^cos 8) = cos8

X
2
(x)=2x2—

1

X
2
(cos 8)=cos26

X
3
(x) =4x 3—3x X

3
(cos 8) = cos 3

X
4
(x)=8x4—8x2+l X

4
(cos 0) = cos 10

P = lA-

X =l X
3
= 3(x3—

2

r
x)

X
x
=x X4=y(39x

4-36x2+4)

X
2
^(x2-|)

•Cowgill, loc. cit., pp. 543 and 545.
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p = l. Legendre Polynomials.

X =l X
3
= ^-(5x3-3x)

X
x
=x X

4
= j(35x4—30x2+3)

X
2
= }(3x*-1)

p = 3.

X =l X
3
= {(7x3-3x)

X
x
=x X

4
= |(21x4— 14x2+l)

X2=j(5x2-1)

p= 5.

X = l X
3
= j(3x3-x)

X
1
= x X

4
=^(33x4-18x2+l)

X
2
= j(7x2-1)

8. The Orthogonality Property. In expanding any function of x into an

infinite series of symmetric Jacobi polynomials it is necessary that the poly-

nomials have the orthogonality property expressed by

/l (0 , m not equal to n

PXmXndx
=

-l [Jn , m = n
,

so that the coefficients can be determined.

Brenke's 10
; condition for orthogonality will hold with the polynomial

solutions of (5).

The derivation of the characteristic function p and Darboux's value of

the constant Jn are best explained in detail.

9. The Characteristic Function p. To explain the derivation of the

characteristic function p one assumes the differential equation

(b) rXn
',+sXn

/+tnXn
= 0, tn a function of n.

Multiplying (b) by p so as to make it "self adjoint", one has

(c) PrXn"+psXn'+ptnXn
= 0, where

d
(d) pr = ps = p'r-f-pr'. (b) can now be written

dx

(e) •£-(PrXn')+ptnXn=0.

From (d) p'r = p(s—r'). —= =———

.

p r r r

Multiplying by dx and integrating

JW^ir*.
10Brenke, loc. cit., Case 1, pp. 78-79.
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log
p=J

-dx— log r
,

log p+log r=logpr=J -dx

f-dx ! f-
pr = e^ r

or p
=— e*7 r

r

dx

Taking the differential equation (5) in the form

and comparing it to (b)

r = and s =—x, s

P+l
-xdx p— 1

L
- x2=(p+D(l-x2

)

2
.

p+L (p+1)/r
1-X2

P

Write the "self adjoint" equations for Xn and Xm .

(f ) £(prXnO+ Ptnxn=o

(g) £(PrXm') + ptmXm = 0.

Multiply (f) by Xm and (g) by Xn . Subtracting, multiplying by dx and in-

tegrating 11 one gets

(W-t.»;^-;y(.^Mx.£(»
a

l=>.
y parts

-,»/:x.x.^[x.(„5)-.(»^)]'
1

f
1 dXn dXm f

i dXm dX
-I pr

—
;—dx+ | pr—— —r~ dx
dx J _j dx dx

As pr contains the factor (1—

x

2
) the non-integral term is and I pXmXn

dx =

unless m = n. This last equation expresses the orthogonality property (12).

10. Derivation of Jn . The writer found it necessary to solve for Jn with

the notation of Darboux and general Jacobi polynomials. From Darboux 12

"One has also

jn
=rxT-i

(
i-x) a-T XnldxJ

= [("+D [

2
(t) [(g+n-T+ 1)

,,

(2n+«) f(«+n) f(Y
+n)

nByerly, Fourier's Series. Par. 91, p. 171.

"Loc.cit., (44), p. 46 and (13), p. 22,
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and
uXn= F(a+n, —n, y, x)

x
1"^ (l-x)^"a d»

x
n+y-l Q_ x

)«+n-y ,,

t(t+D (y+n—l)dx»

[(y+n) = (y+n-l) (y+n-2) (y+Dy[(y) ,

[(y+ n)
y(y+D (y+n-1) '

'

.(y)

Or) r l

^/i
x4^ xn+" a~x)a+niId-

One applies integration by parts n times, where
J
u dv=uv—

J
v du, letting

the polynomial always be u and the derivative and dx be dv. The uv term is

always zero with the limits and 1, as it always contains the terms x and

(1
—x) to some power. Differentiating Xn , (3), n times one finishes with the

coefficient of xn multiplied by n\, so

d^
x _ n+i)

[(a+2n) (-D n
[(n+l)[(y)

dxn "
[(n+1) [(a+n)

|

(y+n)

[(a+n) f(y+n)

After n integrations by parts

j =_M_ (_l)2n
r(«+2n)[(n+l)[(y) £ n+T^ 1(1__x)a+n

_T ^
"

| (Y+n) [(a+n) [(y+n) J

B(m,n)=fxm-l(l-x)Q-ldx= f
(m)

f
(n)

»
J [(m+n)

So +T-lM_^«+n-y ,K._[(T+n) f(a+n-y+ l)

f^-1 (l-x)
a+n-T dx

|(2n+a+l)

T
[(n+l)p(y)[(a+n-y+ l)

'
,

J =! ! !
, Darboux s result.

(2n+a)f(a+n)|(y+n)

Making the transformation to symmetric Jacobi polynomials

p-i r p-i "j
2

(14) Jn=J^p-hl) (l-x2) 2 lXn
2

(x)J dx

_ 2P(p+l)l(n+l)[(2
P
-j

1

) i4
(2n+p) [(p+n)

11. The Derivative Form. Transforming (4) one obtains

l-p
n ~V~ p+2n-l

(15) x = (-mi-*) 2 V-r^ClT
1 n

(p+1) (p+3) (p+2n— 1) dx"

"Woods, Advanced Calculus, p. 166.

I4See Byerly, loc.cit., par. 89, p. 168, for derivation of Jn for Legendre polynomials.


