
Reservoir Operating Rules

Mohammad Karamouz and Mark H. Houck
School of Civil Engineering

Purdue University, West Lafayette, Indiana 47907

Introduction

This study considers a deterministic optimization model to determine general

reservoir operating rules. An algorithm that cycles through a deterministic

dynamic program, a regression analysis and a hydrologic simulation has been

developed. At each iteration the reservoir release becomes more constrained and

the general operating rule becomes more refined. This work is the logical extension

of Young's (3) study to refine the general operating rules by repeating the process

with one extra constraint on the dynamic program; namely, release must be within

some specified percentage of the release defined by the previously defined general

operating rule.

This algorithm was tested using annual streamflow data for the Gunpowder
River, Maryland, the Osage River, Missouri, and the Blacksmith River, Utah. In all

cases, significant improvements in operations of the reservoirs have resulted from

use of the algorithm. In the remainder of this paper the algorithm is described,

some results are presented, and finally a discussion of the results and a set of con-

clusions are given.

Algorithm to Refine Operating Rules

A discrete dynamic program has been formulated to provide the optimal

operating policies for a single reservoir over a finite time horizon of T years. The

reservoir inflows for all T years and the reservoir capacity are assumed to be

known. The objective function is to minimize the total losses caused by very high or

very low streamflows over the T year time horizon. This can be expressed by

T
Minimize E Loss (R f ) (1)

t=l

The loss function (Loss (R
t

)) used in this investigation responds to reservoir

outflow (R
t

) only. As the deviation of outflow or release above or below some accep-

table range increases, the losses associated with the release also increase.

This problem is subject to some physical constraints. The continuity or mass

balance at the reservoir should be preserved at all times. The discrete version of

mass balance can be written as:

St+l-St + Rt^t t=l,2,...,T (2)

where: I
t

= inflow volume during year T
S
t

= storage volume at the beginning of year t

R
t

= outflow volume from the reservoir during year t

Depending on the reservoir system there may also be restrictions on the maximum
and minimum allowable outflows and storages.

Rmax > R t
> Rmin

t = 1, 2, ..., T (3)

t — l — t

Smax > S
f

> Smin t = 1, 2 T (4)

t — l — t

The solution of the dynamic program comprises optimal outflows R
t
and optimal
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storages S
t
for the T year time horizon. These optimal storages and releases are

dependent on the particular sequence of inflows used in the dynamic program and,

therefore, do not define operating rules for the reservoir.

However, the optimal outflows R
t

can be regressed against the optimal

storages S
t
and inflows I

t
to provide general operating rules.

R
t
= al

t
+ bs

t
+ c (5)

where: a, b, and c are constants defined by a multiple regression. The consistency

and the efficiency of these rules can be tested by simulation of the rules in opera-

tion of the reservoir over a long time horizon.

To refine an operating rule, the dynamic program can be used. If an operating

rule already available would require the release at time t to equal ^ then the

allowable release in the dynamic program can be bounded between plus and minus

some percentage of this general operating rule:

(6)(1 - BOUND) **

t
< R

t
< (1 + BOUND)\

where: BOUND = fraction of general operating rule that actual outflow may devi-

ate from the rule in the dynamic program.

The solution of this dynamic program can be used to define a new, refined, general

operating rule. This cycle — dynamic program, regression, simulation, dynamic pro-

gram, ... — can be continued with the value of BOUND decreasing until it equals

zero.

Case Study

In order to test the algorithm and its ability to produce good general

operating rules, several cases were studied including different reservoir sizes and

different streamflow sites. The streamflow sequence used in the dynamic program

was the historical streamflow record. The simulation model was constructed for a

1,000 year time horizon. The streamflow sequence used in the simulation model

was generated by the autoregressive (AR) or auto-regressive-moving-average (AR-

MA) model with the best AIC value (1).

The loss function used for all cases was a discontinuous exponential function.

As the outflow increases from zero to a safe range of outflow, this function ex-

ponentially decreases to zero; and after a safe range, it increases exponentially.

Table 1 is a sample result which clearly expresses the significant value of the

algorithm in selecting reservoir operating rules.

Table 1. Blacksmith River, Reservoir Capacity Equals 1.1* l(fims

Dynamic Program Results General Operating Rules Simulation Results

BOUND losses/year

% Time % Time

Reservoir Reservoir

losses/year Empty Filled

0.36 12.299. 0.441 0.066 59.343. 0.521 74.932. 19.0 17.6

0.18 16.606. 0.478 0.053 55,769. 0.655 76.019. 18.0 17.6

0.09 26,285. 0.524 0.015 52.848. 0.774 78.901. 19.0 18.0

0.06 31.619. 0.553 0.106 44,238. 0.790 75.035. 12.9 13.2

0.03 47.546. 0.593 0.262 30261. 0.914 74,122. 3.9 6.1

0.01 107.362. 0.764 0.677 - 14.429. 0.838 107,756. 0.0 0.0
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Discussion of Results

1. As the value of BOUND decreases, R/ (goodness of fit) increases in general.

This is expected because as BOUND goes to zero all releases are required to

be closer and closer to the regression line.

2. As the BOUND decreases, the losses/year in the dynamic program increase.

Once again this is expected because as the value of BOUND decreases, there

is a tightening of the constraints of the dynamic program and, therefore, the

objective function suffers more.

3. As the value of BOUND decreases to zero the general operating rule changes

drastically. In general the value of c decreases and the values of a, and b in-

crease. These changes signify a shift in the rule from a relatively constant

release to one that depends more on inflow and storage.

4. The loss/year from the dynamic program is less than the loss/year from the

simulation. This is due to the optimal selection of outflows in the dynamic pro-

gram.

5. As the BOUND decreases from infinity to zero, in most of the cases, the

simulation's loss/year first decreases then increases.

6. In the simulation, the percentage of time that the reservoir is either filled or

empty (implying that the actual outflow deviated from the operating rule) is

inversely correlated to the losses/year. In all test cases the minimum percen-

tage of filled or empty time occurred within minimum BOUND value of 0.01.

Choosing the best operating rule for a reservoir involves many criteria, com-

parisons and trade-offs. Two criteria that are explicitly considered here are the

simulation's losses/year and the percentage of time that actual outflow is unequal

to the outflow defined by the operating rule (which equals the percentage of time

that the reservoir is filled or empty). The assumption is that each criterion should

be minimized. This analysis demonstrates that the two criteria are conflicting and

it provides the information needed to choose that rule with the best compromise

between the two criteria.

Rules with a form other than the linear one described here could also be used.

However, as the form of the rule becomes more complex (e.g. non-linear), the com-

putational effort of the algorithm increases. Bhaskar and Whitlach (2) have found a

simple, linear operating rule is as good as or better than the more complex rules in

many cases.

Conclusion

An algorithm to generate reservoir operating rules has been proposed and

tested. The algorithm is easy to use and each component of the algorithm (deter-

ministic dynamic program, multiple regression, simulation) is relatively simple and

well documented in the literature. The algorithm can be used for complex multiple

reservoir systems and for seasonal or annual operation of the reservoirs. All the

test cases with different reservoir capacities and different streamflow

characteristics show significant improvements in the operating rules are possible

when the operating rules are refined using the proposed algorithm.
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