Boron Hydrides. XII. The Synthesis and Infrared Spectra of NaBH₃D and NaBD₃H

ROBERT EARL DAVIS^{1a} and ROBERT E. KENSON^{1b} Purdue University

In continuing our studies on the unusual kinetic isotope effects and exchange reactions observed in simple boron hydrides (as BH_4^- and amine boranes) (2, 3, 4, 5, 6, 7), it seems important to prepare the isotopically mixed borohydrides ($BH_{4-x}D_x^-$) in pure form. Mixtures (with x = 0 to 4) have been prepared by Jolly using a high temperature exchange reaction of deuterium gas with solid potassium borohydride (11). The pure materials are described in the present article.

Synthesis of the isotopic borohydride ions was based on a procedure due to Koester (10). He reported the reaction (all hydrogen):

$$NaH + R_3NBH_3 \longrightarrow NaBH_4 + R_3N$$

which has been modified in the present investigation by the use of NaD or R_3NBD_3 in the reaction.

The infrared spectra of the product of the reaction of NaD with triethylamine borane and the product of NaH with $(C_2H_5)_3NBD_3$ were obtained. In Table 1 the spectra of NaBH₄, NaBH₃D and NaBD₄ in solution are reported. The calculated frequencies for NaBH₄ and NaBD₄ were obtained from the FG matrix calculation of Taylor (8). Table 1 also contains the results of our calculations for NaBH₃D using the force constants reported by Taylor.

The infrared spectrum of sodium borohydride-d was also measured in potassium bromide pellet. The bands were observed at $1702 \pm 5 \text{ cm}^{-1}$ (v_1) , 1214 (v_2) , 2298 (v_{3a}) , 2235 (v_{3bc}) , 1127 (v_{4a}) and 953 (v_{4bc}) . Thus the bands of A₁ symmetry decrease in frequency as the change is made from the solid phase to solution. The symmetric A vibrations must be greatly perturbed by the asymmetric ionic environment within the crystalline state. The bands in the pellet are somewhat broader than those in the liquid phase but a band splitting is not clearly detectable.

The infrared spectrum of sodium borohydride- d_3 was obtained in a Nujol mull. The bands were observed at 1727 cm⁻¹ (v_1), 1090 (v_2), 2320 (v_{3a}), 1781 (v_{3bc}), 825 (v_{4a}) and 855 (v_{4bc}). The same shifts with A and E bands observed in NaBH₃D were observed with NaBD₃H.

In a future paper the kinetic isotope effects for hydrolysis of these mixed ions will be reported.

Experimental

Synthesis of Sodium Borohydride-d.

A 250 ml three-neck round-bottom flask was fitted with a condenser and a nitrogen-inlet tube. The system was purged with nitrogen and 90

^{1. (}a) Alfred P. Sloan Fellow 1962-1966. (b) Purdue Research Foundation XL Fellow 1964-65. Taken in part from the Ph.D. Thesis, June, 1965. The computer program is listed in this thesis in Fortran II for the IBM 7094.

CHEMISTRY

$\mathrm{BH}_{4}^{}$	Experimental $\pm 3 \text{ cm}^{-1}$	Calculated
Vı	2264ª	2267
\bigvee_2	1210ª	1210
V ₃	2244	2251
\vee_4	1080	1089
$BH_{3}D^{}$		
\bigvee_{1}	1646	1643
\bigvee 3	1214	1172
\bigvee_{3a}	2277	2264
V _{3de}	2259	2251
V _{4a}	1102	1072
V _{4de}	952	957
$BD_{4}^{}$		
\bigvee_{1}	1571^{a}	1603
\bigvee_2	855^{a}	856
\bigvee_{3}	1696	1686
$\sqrt{4}$	823	819

TABLE 1. Comparison of the Experimental Frequencies in Solution with the Calculated Values in cm^{-1}

(a) Raman value, Ref. 11.

ml of methylcyclohexane was added, followed by careful addition of 2.5 g (0.05 moles) of sodium deuteride dispersion (Metal Hydrides—51% sodium deuteride) and 8 ml (0.056 moles) of liquid triethylamine borane. The reaction mixture was heated to 100° C under nitrogen. After a day the solvent was evaporated, and more was added. For the next four days the system was purged with nitrogen every few hours to remove the free triethylamine. The odor of amine was noticeable. The solid product was removed by filtration. The unreacted triethylamine borane was recovered by extraction with ether. The solid was then extracted with isopropylamine. The product was obtained upon evaporation *in vacuo* of the amine. Sodium borohydride-d (0.60 g, 39% of theory) was recovered. The infrared spectrum was determine on a Perkin-Elmer 221 high resolution (± 3 cm⁻¹) infrared spectrophotometer. The observed bands corresponded well to the expected spectrum of sodium borohydride-d.

Since the two infrared active bands of BH_{4}^{-} are so close to two of the infrared active bands of BH_3D^{-} , the presence of BH_{4}^{-} in sample cannot be detected. The analysis of the sample by mass spectra of the gas produced on complete acid hydrolysis gave a ratio of H_2/HD of 4.90, indicating a mixture of 67% NaBH₃D and 33% NaBH₄. Since no infrared bands were seen in the region of 1600 cm⁻¹, it has been concluded that little or no $BH_2D_4^{-}$ was present.

$$\begin{array}{ccc} BH_{3}D^{-} \xrightarrow{H^{+}} H_{3}BO_{3} + HD + 3H_{2} \\ BH_{4}^{-} \xrightarrow{H^{+}} H_{3}BO_{3} + 4H_{2} \\ mild \ acid \ hydrolysis \end{array}$$

Synthesis of Sodium Borohydride-d₃

The preparation of triethylamine borane $-d_3$ was required as a preliminary step. Treithylamine borane (12 g, 0.0104 moles) was dissolved in 150 ml of ether. This was stirred with 100 ml of 1.7 normal DCl-D₂SO₄ solution. This acid solution is prepared from heavy water (99.73% D) and sulfuryl chloride. The preparation is discussed in another paper (6, 9).

After eight hours the ether layer was separated and dried over potassium carbonate. The ether was removed *in vacuo* by use of a Rinco flash evaporator and the infrared spectrum of the liquid amine borane determined as liquid film on a Perkin-Elmer 221 high-resolution infrared spectrophotometer. The procedure was repeated twice until the boron-deuterium bands present indicated that the amine borane had been at least ninety percent deuterated on the boron atom.

$$(C_2H_5)_3N-BH_3 \xrightarrow{D_3O^+} (C_2H_5)_3N-BD_3$$

The deuterated triethylamine borane, (6.4 g, 0.056 moles) was reacted with 2.5 g (0.05 moles) of sodium hydride (51% by weight in oil, Metal Hydrides) in 90 ml of methylcyclohexane at 100° C (under the same procedure as sodium borohydride-d) for one week. The yield was 0.1 g or 13 percent of theory. The infrared spectrum was taken on a Perkin-Elmer 221 high resolution infrared spectrophotometer as a Nujol mull after the potassium bromide pellet method failed. The spectrum corresponds to that of sodium borohydride- d_3 while the background bands exist that may be other borohydrides as BH₂D₂-.

Calculations

The F and G matrix method (1, 12) has been used to obtain the results of the present investigation using an IBM 7094 computer.

Acknowledgement

The authors wish to express their thanks to the Sloan Foundation, the Purdue Research Foundation and the American Chemical Society (Petroleum Research Foundation, Grant 1874-A) for support. The Dean's Fund at Purdue covered the cost of computing.

Literature Cited

- 1. BARROW, G. M. 1962. Introduction to Molecular Spectroscopy. McGraw-Hill Book Co., Inc., New York.
- DAVIS, R. E. 1962. Boron hydrides. IV. Concerning the geometry of the activated complex in the hydrolysis of borohydride ion by trimethylammonium ion. J. Am. Chem. Soc. S4:892-894.
- DAVIS, R. E., and J. A. GOTTBRATH. 1962. Boron hydrides. V. Methanolysis of sodium borohydride. J. Am. Chem. So. 84:895-898.
- DAVIS, R. E., and C. G. SWAIN. 1960. General acid catalysis of the hydrolysis of sodium borohydride. J. Am. Chem. Soc. 82:5949.
- DAVIS, R. E., E. BROMELS, and C. L. KIBBY. 1962. Boron hydrides. III. Hydrolysis of sodium borohydride in aqueous solution. J. Am. Chem. Soc. 84:885-892.

- DAVIS, R. E., A. E. BROWN, R. HOPMANN, and C. L. KIBBY. 1963. Boron hydrides. VI. A rapid and quantitative exchange of the boron hydrogens in trimethylamine borane with D₂O. J. Am. Chem. Soc. 85:487.
- DAVIS, R. E., C. L. KIBBY, and C. G. SWAIN. 1960. An inverse hydrogen isotope effect in the hydrolysis of sodium borohydride. J. Am. Chem. Soc. 82:5950.
- EMERY, A. R., and R. C. TAYLOR. Raman spectroscopy in liquid ammonia solutions. Vibrational frequencies and force constants for isotopic species of the borohydride ion having tetrahedral symmetry. J. Chem. Phys. 28:1029-1032.
- 9. HAWTHORNE, M. F., and W. L. BUDDE. 1964. Mechanism of displacement reactions at tetrahedral boron. J. Am. Chem. Soc. 86:5337.
- KOESTER, R. 1957. Neue Herstellungsmethoden f
 ür Metallborhydride. Angew. Chem. 69:94.
- 11. MESMER, R. E., and W. L. JOLLY. 1962. The exchange of deuterium with solid potassium hydroborate. J. Am. Chem. Soc. 84:2039-2042.
- 12. WILSON, E. B., J. C. DECIUS, and P. C. CROSS. 1955. Molecular Vibrations. McGraw-Hill Book Co., Inc., New York.