Spectrophotometric Determination of the Chromate-Dichromate Equilibrium Constant

JACK A. SMITH and CLYDE R. METZ

Department of Chemistry

Indiana University-Purdue University at Indianapolis, Indiana 46205

Abstract

Using conventional spectrophotometric techniques, the concentration equilibrium constant for the reaction

$$2 \operatorname{CrO}_{1}^{2-} + 2H^{+} = \operatorname{Cr}_{2}O_{7}^{2-} + H_{2}O_{7}^{2-}$$

was determined. For seven solutions with constant ionic strength of 0.375 molar, the average value is 1.3 x 10^{16} and the estimate of the standard deviation is 0.97×10^{10} . Calculations concerning total Cr(VI) content of the mixtures indicate that the concentration of the proposed intermediate HCrO₁- is nearly 3 per cent of the content in the slightly acidic solutions studied.

If a Beer's law plot is made for either the chromate or dichromate ion, the resulting curve of absorbance, A, plotted against the logarithm of the concentration is not a straight-line relationship as predicted by theory. This failure of the Bouger-Beer relationship is the result of the chemical equilibrium existing between the ions and the solvent. The overall reaction in acid or neutral media is

$$2 \operatorname{Cr}O_{1}^{2-} + 2\mathrm{H}^{+} = \operatorname{Cr}_{2}O_{1}^{2-} + \mathrm{H}_{2}O_{2}$$

where the H^+ could originate from the dissociation of the water or from an added source. The concentration equilibrium constant for this reaction, K₁, is given by

$$K_1 = [Cr_2O_7^{2-}]/[CrO_4^{2-}]^2[H+]^2.$$

Previous work on this system by Sherrill (12) and Spitalsky (13) has shown that the probable mechanism for the reaction involves $HCrO_i$ as an intermediate ion in a two step process which can be written as

$$\operatorname{CrO}_{4}^{2-} + \operatorname{H}_{+} = \operatorname{HCrO}_{4}$$

$$2HCrO_{4} = Cr_{2}O_{7}^{2-} + H_{2}O_{7}$$

Associated with each step is an equilibrium constant given by

$$K_{z} = [HCrO_{4}]/[CrO_{4}^{2-}][H+]$$

$$K_{3} = [Cr_{z}O_{7}^{2-}]/[HCrO_{4}]^{2}$$

where $K_1 = K_2^2 K_3$.

For solutions that are slightly acidic, the relative concentration of the intermediate ion is in the order of 1-10% of the total Cr(VI) concentration based on previous measurements of K_2 and K_3 reported by several investigators (2-6, 8, 9-14). For the purpose of determining K_1 the exact value of [HCrO₄⁻] is not important, but by comparing the calculated value for the concentration of Cr(VI) from experimental values of [Cr₂O₇²⁻] and [CrO₄²⁻] to the known stoichiometric total of Cr(VI), an estimate of [HCrO₄⁻] can be made.

Experimental

All spectrophotometric measurements were made using a Beckman DB-G recording spectrophotometer. The insulating jacket of the cell compartment was thermostated at 25 °C by circulating water through it from a constant temperature bath. The pH measurements were made using a Leeds and Northrup Model 7401 pH meter. All solutions were prepared using normal quantitative laboratory techniques using Class A volumetric glassware. Once prepared, the solutions were allowed to sit for a period of a few hours in a constant temperature bath to come to equilibrium.

Spectra were taken for 6 x 10⁻⁵M solutions of Na₂CrO₄ containing 0.01 M HCl, 0.1 M HCl, 0.01 M NaOH and 0.1 M NaOH. There were no differences in the two acid spectra nor in the two base spectra indicating that complete separation of the $\text{CrO}_{4^{2^-}}$ and $\text{Cr}_2\text{O}_{7^{2^-}}$ ions was achieved. A four-fold increase in concentration was desired to obtain spectra in the optimum range of 20-60% transmittance. From the spectra of an 8 x 10⁻⁵M Na₂CrO₄ solution containing 0.4 M NaOH and 2.4 x 10⁻⁴ M Na₂CrO₄ containing 0.4 M HCl ([$\text{Cr}_2\text{O}_{7^{2^-}}$] = 1.2 x 10⁻⁴M) the working wavelengths of 352 and 373 nm were chosen.

Because of the overlap of the absorption curves at these wavelengths, it was necessary to measure the molar absorbancies for each ion at both wavelengths and to use the following equations to determine the individual ionic concentrations

 $[CrO_{7}^{2-}] = \frac{a_{2D}A_{2} - a_{1D}A_{2}}{a_{1c}a_{2D} - a_{1D}a_{2C}}$ $[Cr_{2}O_{7}^{2-}] = \frac{a_{1c}a_{2} - a_{2C}A_{1}}{a_{1c}a_{2D} - a_{2D}a_{2D}}$

where \mathbf{a} is the molar absorbancy, \mathbf{A} is the absorbance of the mixture, the subscripts 1 and 2 refer to the two chosen wavelengths, and the subscripts C and D stand for chromate and dichromate ion, respectively.

Duplicate trials were made on solutions of 1.2×10^{-4} M CrO_{4}^{2-} , 0.125 M Na₂HPO₄ and 0.03 M citric acid; 2×10^{-4} M CrO_{4}^{2-} , 0.125 M Na₂HPO₄ and 0.03 M citric acid; 1.6 $\times 10^{-4}$ M CrO_{4}^{2-} , 0.125 M Na₂HPO₄ and 0.045 M citric acid; and 2.4 $\times 10^{-4}$ M CrO_{4}^{2-} , 0.125 M Na₂HPO₄ and 0.045 M citric acid. The buffering components of these solutions gave a constant ionic strength of 0.375 M. Spectra were taken for one set of these solutions after sitting a week to assure the establishment of equilibrium.

160

CHEMISTRY

Results

The data and results of the spectra and pH measurements are given in Table 1. The second set of data taken for the second set of solutions showed a 22% decrease in K₁ which is well within the experimental error present in this investigation. Thus, the results reflect equilibrium conditions.

% T 1	$\% T_2$	pH	\mathbf{a}_1	\mathbf{a}_2	[CrO ₄ ²⁻] x 10 ⁵	[Cr ₂ O ₇ ²⁻] x 10 ⁵	[H+] x 10 ⁷	K ¹ x 10- ¹⁰
56.0	37.8		3145	5275	(8.01)			
43.6	53.0		3002	2296		(12.01)		
55.0	46.5	6.32			4.66	3.76	4.79	7.5^{1}
29.9	19.0	6.22			11.14	5.78	6.03	1.3
49.9	50.4	5.38			2.32	7.62	41.68	0.8
35.1	36.0	5.43			3.34	11.63	37.15	0.8
53.5	37.0		3392	5393	(8.01)			
44.0	55.0		2969	2161		(12.01)		
62.2	54.0	6.14			4.02	2.35	7.24	2.8
31.8	18.6	6.33			12.58	2.36	4.68	0.6
54.2	55.3	5.63			2.17	6.47	23.44	2.5
40.5	41.6	5.26			3.25	9.50	54.95	0.3

TABLE 1. Data and results of the spectra and pH measurements.

¹ Discarded value of K₁.

The average of all 8 values if K_1 is 2.1 x 10¹⁶, but based on the Range Rejection Test of Moshman and Otta (7), there is a 99% probability that the 7.5 x 10¹⁶ value has a systematic error present and should be discarded. The average of the remaining data is 1.3 x 10¹⁶ with an estimate of the standard deviation of 0.97 x 10¹⁶ which corresponds to a confidence interval for the mean on a 99% probability limit basis of \pm 1.4 x 10¹⁶.

The experimental value of the Cr(VI) content is found by adding the value found in Column 6 of Table 1 to twice the value found in Column 7. Subtracting the known value gives the amount of Cr(VI)present presumably as $HCrO_4$. Doing this calculation on a percentage basis, the average value for the 7 data is 3% of the Cr(VI) present as $HCrO_4$.

Discussion

The overlap of the absorption curves introduces considerable error in calculating the molar absorbancies and concentrations. Although the error in reading the transmittance at the peak of the absorption curve is rather small, $\pm 0.5\%$, the error in the %T at the other wavelength is considerably larger, $\pm 2\%$. Using these estimates of random error, the predicted errors in the molar absorbancies are a_{1c} $= \pm 200$, $a_{2c} = \pm 60$, $a_{1D} = \pm 40$ and $a_{2D} = \pm 140$. These predicted values are near those observed between the two sets of standard solutions given in Table 1. Using these results and assuming that the error in the pH values is ± 0.02 and in the %T readings is \pm 2%, the error in K₁ is predicted to be 1.7×10^{16} agreeing with the confidence interval. It can be concluded that the reproducibility of the K₁ values is the result of the limited precision of the technique.

The experimental value of K_1 differs considerably from the value of 2.4 x 10¹⁴ which is the thermodynamic equilibrium coefficient calculated from available data (9). The values of the ionic activity coefficients are not available for the solutions of ionic strength equal to 0.375 M, so an exact comparison to the true equilibrium constant cannot be made. The experimental value is valid, however, for a solution for that particular value of ionic strength.

The previously-determined experimental values and those calculated from self-consistent values of K_2 and K_3 cover a wide range, *e.g.*, 6.7 x 10¹² reported by Sand and Kaestle (10) who reported "disturbing conditions," 1.6 x 10¹³ by Sherrill (12), 1.95 x 10¹¹ reported by Spitalsky (13), 3.23 x 10¹⁴ reported by Carriere and Castel (2) at 18°C, 5 x 10¹³ reported by Mohanty, Ramana-Rao and Pani (6), 1 x 10¹⁴ reported by Sasaki (11) for solutions of ionic strength of 3M, and 1.9 x 10¹⁴ reported by Jain and Jain (5). Although a rather large scatter in results of this type would normally be expected, the range of 2 x 10¹¹ to 1 x 10¹⁵ is rather large and the system should be further investigated to determine the actual effect of ionic strength and to experimentally determine the thermodynamic equilibrium constant.

The experimental value of approximately 3% of the Cr(VI) existing as HCrO₄⁻ in the solution studied does not differ appreciably from the value of 5-10% which appears on the graphs in the paper by Sasaki (11). Thus, it can be concluded that the HCrO₄⁻ concentration does not account for a significant amount of the total Cr(VI) present for the slightly acidic solutions studied.

Acknowledgment

The authors would like to thank the IUPUI Department of Computer Technology for the use of their facilities.

Literature Cited

- 1. ABEGG, R., and A. J. Cox. 1904. Chromat, bichromat und chromsäure. Z. Phys. Chem. 48:725-34.
- 2. CARRIERE, E., and P. CASTEL. 1928. Etude experimentale de la transformation des chromates en bichromates. Compt. Rend. 187:1292-4.
- DAVIES, W. G., and J. E. PRUE. 1955. A spectrophotometric study of the equilibrium Cr₂O_{7²⁻} + H₂O ≥2HCrO₁-. Trans. Faraday Soc. 51:1045-51.
- HOWARD, J. R., V. S. K. NAIR and G. H. NANCOLLAS. 1958. Potentiometric and spectrophotometric studies of the equilibrium HCrO₁- → H+ + CrO₁²⁻. Trans. Faraday Soc. 54:1034-1037.
- JAIN, D. V. S., and C. M. JAIN. 1967. Studies of polyanions and polycations by Glaubers'-salt cryoscopy.III. Polyanions of chromium and their equilibrium processes. J. Chem. Soc. A1967:1541-1542.
- 6. MOHANTY, B. C., D. V. RAMANA-RAO and S. PANI. 1954. Study of the action of acid on chromate ion by glass electrode. Current Sci. (India) 23:52-3.
- 7. MOSHMAN, J., and G. J. OTTA. 1951. A range criteria for testing an outlying observation. U. S. Atomic Energy Comm. Rep. ORNL-1020. 12 p.
- 8. NEUSS, J. D., and W. RIEMAN III. 1934. The application of the glass electrode to a study of chromic acid. J. Amer. Chem. Soc. 56:2238-2243.
- ROSSINI, F. D., D. D. WAGMAN, W. H. EVANS, S. LEVINE and D. JAFFE. 1952. Selected values of chemical thermodynamic properties. Nat. Bur. Stand. Circ. 500. 1268 p.
- SAND, J., and K. KAESTLE. 1907. Dichromat und chromat. Z. Anorgan. Chem. 52:101-123.
- SASAKI, Y. 1962. Equilibrium studies on polyanions. IX. The first steps of acidification of chromate ion in 3M NaClO₁ medium at 25°. Acta Chem. Scand. 16:719-734.
- SHERRILL, M. S. 1907. The equilibrium relations of chromates in solution. J. Amer. Chem. Soc. 29:1641-1675.
- SPITALSKY, E. 1907. The condition of chromates and chronic acid in water solution. Z. Anorg. Chem. 54:265-314.
- TONG, J. Y., and E. L. KING. 1953. A spectrophotometric investigation of the equilibrium existing in acidic solutions of chromium (VI) Ion. J. Amer. Chem. Soc. 75:6180-6186.