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Abstract

In the context of guided wave propagation, the concept of impedance wall is an
extension of the classical problem of propagation in guides bounded by perfectly

conducting walls. The notion has been used by a number of workers for the study

of some particular guide types in which the wall impedance may be assumed con-

stant. The author formulates precisely the appropriate boundary value problem

for general impedance walls for guides of constant circular section and, in

particular, determines all axially symmetric solutions which yield waves propagating

without attenuation. It was found that these solutions do not, in general, yield a set

of complete orthogonal functions on the guide interior. When the analysis was
appropriately modified to eliminate this difficulty, it was found that the theory is

applicable to a much larger class of guides in which the wall impedance may be a

non-constant function of distance along the guide.

Introduction

A prominent part of the classical theory of guided wave propaga-

tion is the theory of propagation in closed cylindrical tubes, of circular

section, in which the wall is supposed perfectly conducting. When
phrased as a steady-state boundary value problem for Maxwell's equa-

tions, the assumption of perfect conductivity reduces the condition:

at the wall radius, the components of the electric vector E tangent to

the wall vanish identically. Analysis then leads to the well-known

theory of modes of propagation in cylindrical guides. (See, for example,

the developments of the theory in such treatises as (7, 11, 12 or 14).)

In recent years, some researchers have considered certain prob-

lems of guided wave propagation for cylindrical domains with the aid

of a mathematical model in which the perfectly conducting cylindrical

boundary is replaced by an impedance wall. For example, Unger (16, 17,

18) used such a model to study propagation in certain types of

helical, lined and dielectric waveguides. As he stated in (16), such a

model may be employed for waveguides which ". . . have a uniform

and isotropic interior but an exterior which may be either hetero-

geneous, anisotropic or unlimited. To find the normal modes of wave
propagation is considerably facilitated when the complex exterior

region is replaced by an impedance wall at the interface to the interior.

The boundary-value problem may then be formulated with the im-

pedances of this wall."

I independently considered such problems in my search for reason-

ably simple mathematical models for the slow wave guides of traveling-

wave tubes. To develop a useful field theory of phenomona in such
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devices, a model for the guide is required which may be applied to a

variety of tube interiors: otherwise, an analysis must be carried out ad

hoc for each one of the many interesting and potentially useful slow

wave guide geometries.

In fact, a preliminary study along the lines just described was

carried out by Birdsall and Whinnery (3). Although these authors

clearly appreciate the desirability of having generally applicable field-

theoretic models for such tubes, their analysis ".
. . is primarily appli-

cable to non-propagating structures such as the inductive- and resistive-

wall amplifiers . . .". However, on the basis of the results given in

this paper, I considered that the impedance wall concept is capable of

yielding information of a much more general character. Most traveling-

wave tubes consist of a cylindrical beam of electrons, surrounded co-

axially by a slow wave guide, between which intervenes an empty
cylindrical annular region. If wall impedances can be assigned—either

at the outer boundary of the latter domain or at the boundary of the

beam itself—so as to produce an interior field (in the absence of the

beam) of the same character as that of an actual slow wave structure,

then the possibly artificial character of the wall-impedance notion is

a matter of indifference.

Accordingly, I adopt here the following point of view: the notion

of wall impedance leads to a perfectly well-defined boundary value

problem of electromagnetic theory, in its own right, of a more general

character than the classical problem (which now appears as a simple

special case). This problem was formulated precisely, and I studied

the properties of the fields which emerged as a consequence.

Formulation of the Impedance-Wall Boundary Value Problem.

Solutions in the Case of Constant Wall Impedance.

Details for the Axially Symmetric Case.

Maxwell's equations for the interior of a vacuous region V are

(in MKS units, (14))

V X H - e rr 0, V X E + fi = O [1]
dt dt

where E and H are the usual electric and magnetic intensities, and
e and ix are the permittivity and permeability of vacuum, respectively.

I was concerned only with single-frequency phenomena in the steady

state, and thus assumed E and H to depend on the time in the form
e-iwt

( ) = 2?rf, f an arbitrary positive frequency in cycles/second).

Then, replacing E, H in [1] by E e iwt
, H e iw « obtained the usual

time-independent equations,

A x H + i ,cE = 0, A X E - WH - O [2]

I took for region V, referred to cylindrical coordinates r, 0, z, the

open cylindrical domain defined by 0^r<B, O^0<2tt, /z/<oo, where
the radius B of V is an arbitrary but fixed positive constant (Fig. 1).
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Figure 1. From left to right, cross- and longitudinal sections of the domain V:

0—r<C.B,/z/<C.oo. The wall impedance boundary conditions are applied at r=B.

I therefore sought vectors E and H with the following properties:

1) at every point of V, E and H satisfy equations [2]; 2) these solu-

tions have the character of waves traveling in the direction z>0;

3) at the boundary r = B, the angular and axial components of E
and H satisfy the conditions

E,

~S7
= - Z,

H,
[3]

where Zi and Z L. are complex-valued in general, but are independent

of position (</',z) on the wall r = B. (As seen below, [3] may be in-

terpreted in such a way that Z,,Z, represent sequences of complex
numbers.

Following Unger in (16), Zi, Z L. were called the impedances of

the wall r = B. The case where Zi, Z L. are independent of position

nevertheless allows them to be arbitrary functions of the frequency

parameter 0) . This case was considered first, and then I showed
how one may deal with problems for which the impedances may be

functions of boundary position.

Since I intend to publish a fuller account elsewhere (13), the

solution process was described only in outline and I proceed directly

to the solutions themselves. The equations [2] were first written in

the coordinates (r,</>,z). From the nature of the domain V, it was
clear that the desired solutions must have period 2tt in 0; supposing

the field components to depend on </> in the form exp(in0) (n = 0,

± 1, ±2, . . .), the equations were then reduced to equations in the n-th

Fourier components of Is and H. Further, to satisfy condition 2),

I supposed these latter components to vary with z as exp(ijSz), for

some (real) ft to be determined. The resulting equations were then

solved for the transverse components E r ,Eq,H r,HQ as linear functions

of the axial components E,,H, and their derivatives with respect to r.

Let k = o>/c (c = 1/ V fie being the usual plane wave phase propagation
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velocity). Two solutions were then obtained, according as £>k or p^k.

They were as follows:

£>k: slow waves

E r = B I (Tr) A I'(Tr)
TP~r n n f n n

i 0)(x (in

Ey = B I'(Tr) + A I (Tr)
f n n Y-r n "

Ez = A I (Tr)
n n

\ji ,en

H r = - —B I'(Tr) - A I (Tr)
f n n T^r n n

tfn i 0)(

Hg = B I (Tr) - A I'(Tr)

H, = B I (Tr)
n n

X e
i(ntf +/3z-o,t)

[4]

p^k: fast waves

Eg

i0fii) \p
D J (Tr) + — C J'(Tr)

^l»j. n n f n n

i 0>/u 0n
D J'(Tr) C J (Tr)

f n ii T-r " "

Ez = C J (Tr)
n n

1/3 (,>cn

H r = — D J'(Tr) + C J (Tr)
IP n n T-r " "

£n i j<

Hg = - D J (Tr) + C J'(Tr)
Ylif n n IP

n n

H, = D J (Tr)

L X e
i(n«/, +/az- >t)

[5]

where n = O, ±1, ±2, . . ., and

T = V/32 _ k2, £>k

= Vk2 - 02, /3^k

[6]

and An, . . ., D„ are constants of integration depending, in general,

on k and n. The phase factor of the field, expi(£z - o>t), gave for

the phase velocity v = u>/j8, and v/c = k/jS for the relative phase
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velocity; hence my designation as slow (fast) waves those with

P > k (/3^k), which just corresponds to v/c < 1 (v/c ^ 1). In [5],

J„(x) is Bessel's function of the first kind of order n (cf. (20)), and in

[4], I„(x) is the modified Bessel's function of order n. In both [4]

and [5], ()' denotes derivative with respect to the complete argument,

Tr. I was interested in solutions with real values of |8 which—for either

slow or fast waves—corresponds to propagation without attenuation in

the direction z > 0.

It remained to impose the boundary conditions [3]. I recalled

that [4] and [5] are expressions for the n-th term in the Fourier

development of the field. In applying [3], I supposed that each

such Fourier component has associated with it two impedances Z (n)
,

1

Z (n)
. (Of course Z (n) = Z may be taken for all n, i.e., it may be

2 i j

assumed in particular that each component "sees" the same impedance.)

Calculation then gives, if /3 > k,

I (TB) Z<»>I'(TB) ——I'(TB) - Z<"'I (TB)
n y i n

I T n 2 i» '<

(TB) =
[7]

and if /3^k,

[ico 4 ~\ T iw/" 1
J (TB H Z<»>J'(TB) J'(TB) + Z (,»J (TB)

ii XI"
j j

T n 2 ii
S

/ /in X-'

+ [
1 ) Z<-'»J^(TB) =

\ T^B / i » [8]

These are equations to determine j8: Maxwell's equations [2] have

in V the sequence of solutions [4] or [5] satisfying the boundary con-

ditions 3), each unique up to a constant factor, provided that /3 satis-

fies [7] or [8], respectively. (I remark that—for the general case

—

if (3 and hence T- is actually a proper complex number, lying on

neither axis of the complex plane, then it is largely a matter of

indifference whether [4] or [5] is adopted as the canonical solution

set.)

For solutions that are axially symmetric (n = 0), both solutions

[4] and [5] and the equations [7] and [8] simplify radically. This

results in
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£>k

1/3- _ _ BoIilTr)
T

i/3

E r = _ — AoI^Tr) H r

T

Hg = _ -^- AoIi(Tr) (a) E„
T

- BoUTr)
T

(b)

[9]

E, = A (Jo(Tr) H z = BoIo(Tr)

and
li^k

i/3

= - — DoJi(Tr)
T

i/3

E r = - — CoJ^Tr) H r

H q = _ -^- CoJi(Tr) (a) Eg
T

= ^ D,J l( Tr)
T

(b)

E, = CoJo(Tr) H z = DoJo(Tr) [10]

In place of [7] and [8] the following- results for £ > k

Io(TB) - ~^- ZJ^TB) = (A =^
T ' ^ 0) (a)

[11]

-^- L(TB) _ Z2Io(TB) = (Bo=^ 0) (b)
T

and for /3 ^ k,

j (TB) _ -^- ZJ^TB) = (C„=^ 0) (a)
T

^
[12]

_ J^_ J X (TB) + Z2J (TB) = (D„=^ 0) (b)
T

^
(where I wrote Z<o)= Z Z<<>>= Z ). Thus if n = (and only then), it

1 12 2

was seen that the fields split into E- and H-waves, the coefficients

Ao,B (or Co,Do) are independent, and the value of T in [9a] satisfies

[11a], while the T of [9b] satisfies [lib]: a similar remark holds

for expressions [10] and equations [12].

The case of real values of p > k was now considered. If I defined

Z rrrA/^/e ~ 376.7 ohms, then ^ = k/Z and com = kZ could be written.

Then equations [11] could be written in the dimensionless forms

TBIo(TB) iZ,- kB (E-waves) (a)
Ii(TB) Z [13]

iZ«

= kB (H-waves) (b)
Z,.

respectively. The character of the solutions to [13] was readily seen

by a simple graphical argument. The behavior of the common left-

hand side of [13] is shown in Figure 2. It followed that equations

[13] have unique real solutions TB (and hence j3B) if, and only if,
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the right-hand sides were both real and ^ 2. In particular, it was
obviously necessary that both Zi,Z 2 be purely imaginary, with Im
Z, < and Im Z 2 > 0. In terms of wall impedances thus chosen,

kB must be ^ 2Z /iZ, and kB must be ^ 2Z 2 /iZn, respectively.

Figure 2. Sketch of the graph of y=xIo(x) /Ii(x) for x > O, from which it is clear that

the equation y = A has one and only one real solution xi (say) for every constant

A>2.

However, there was no sharp separation between the slow and
fast wave situations, as is described below. For, turning to equations

[12], their dimensionless equivalents were obtained in the same way,

viz.,

TBJ„(TB) iZx
= kB

J.(TB) Z„

iZfl

(E-waves) (a)
[H]

- kB (H-waves) (b)

The behavior of xJ (x)/Ji(x) for x^O is shown in Figure 3. The
first vertical asymptote in Figure 3 occurs at the smallest positive

zero of Ji(x); letting x t be this zero, both equations [14] have in-

finitely many real solutions TB>Xi for all purely imaginary values

of Zi and/ or Z 2 . There was, in fact, clearly a solution corresponding

to each branch of the graph lying in the half-plane x>Xi. If 0^TB<Xi,
the equations [14] then had solutions if and only if the right-hand

sides are ^ 2. Evidently it was only the last-mentioned situation which

bore any relation to the real slow wave solutions already discussed.
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For example, fixing upon a value of kB in kB(iZi/Z„), Z a was chosen

so that kB(iZ 1 /Z„)<2. Then Figure 3 shows that [14a] has exactly

one (fast wave) solution TB with 0<TB<x,. If I made kBOZx/Z,,)

increase, I obtained at kB(iZi/Z„) = 2 the solution TB = 0, satisfying

both [13a] and [14a]. But now, for kB(iZ,/Z„)>2, [14a] clearly has

no solution with 0<TB<x,, while [13a] now has the single solution

already discussed. As kB(iZi/Z„) increases in the manner described,

then, the fast wave solution on 0<TB<Xi transforms continuously

into the slow wave solution of [13a]. However, no such transformation

takes place with any of the infinitely many other fast wave solutions

having TB>Xi, bearing out my remark above regarding the inseparable

nature of the fast and slow wave cases since, in general, it is seen

that there will be no solution entirely free of fast waves. The existence

and nature of the solutions to [13] and [14] has thus been revealed

completely, in a qualitative way. (Explicit approximate formulas

for these solutions were given in (13).)

Figure 3. Sketch of the graph of y—xJo(x)/Ji(x) for x>0. The points xok are the

zeros of Jn(x). (The vertical asymptotes occur at the zeros xik of Ji(x).) It is clear

from the sketch that the equation y = A always has countably many real solutions for

every real A. If A = Az<2, then there is a real solution on the interval 0<x<x//. //

A=Ai>2, then there is no real solution on this interval.

The total component E z of the field with kB(iZ,/Z„)>2 is now
considered. Then [13a] has the solution TB = X„ (say), and [14a]

has the infinite sequence of solutions T„B — X„ (n = 1,2,3,...); Figure

4 shows these solutions. From [6], (i,B = V (kB)- -f- X- (the slow
(i

wave) and /3„B = V (kB)^ - X? (all the fast waves). From [9a] and

[10a], E, is now given by a sum over all these modes of propagation,

viz.,
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r ipoZ
E = A I (X _)e +

z B r
n=l

r i/3 n z
C J (X -)e

n o n B [15]

Just as in the case of perfectly conducting wave guide, it is now seen
that at a fixed but arbitrary value of kB, all but a finite number of
the fast wave modes are beyond cut-off. However, a subtle aspect of the
field not present in the classical case can now be seen: because of

the presence of the slow wave component, AoI„(X —)exp(i/3 z), the
B

terms of the series [15] at z = 0, viz.,

A I (X -)
O B

+ z
n=l

C J (X -)
n () n R

do not constitute a complete orthogonal set on V. It follows that
the amplitude coefficients A„,C,,C,, . . . cannot be determined by a
Fourier-Bessel development of a prescribed initial field given at
z = 0, as holds for the classical case. To determine these amplitudes,
a technique must be employed which introduces the initial data at
the outset. Such a method is furnished by the Laplace transform,
which was applied next.

Figure 4. This sketch indicates the location of the solutions of TBIo(TB)/Ii( nCB)=
kB(iZi/Zo) and TBJo(TB) /Ji(TB) = kB(iZi/Zo) for the case that kB(iZi/Zo) is real

and > 2. The first equation has the single real solutioyi Xo, the second an infinite

sequence of solutions Xi.Xi.Xs, . . ., of which the first three are indicated. In §§ 3 and 4,

where TB takes complex values, the latter go over into the purely imaginary solu-

tions iXi,iXt,iXs
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Laplace Transforms of the Field Equations and Their Solutions

To overcome the lack of completeness observed in § 2, I returned

to Maxwell's equations [2], reduced them again to equations in their

n-th Fourier ^-components, and took their Laplace transforms with

respect to z. If F = F(r,n,z,0) ) is any one of the six reduced field

components E r , . . ., H z , the Laplace transform F of F, with respect

to z, is given by

x

L(F) = F(r,n,s,w ) = j e -«F(r,n,z,w )dz

if the integral on the right exists (see, e.g., (5) or (9)). The transform

enjoys inter alia the operational properties

dF ~ a-'F - dF
L( ) = sF - F(r,n,G, (f) ), L( ) = s-F-sF(r,n,0, tr) )

dz dz- dz zr=0

When Laplace transforms of the reduced Maxwell's equations are

taken, it is possible to solve for the transforms of the transverse com-

ponents E r ,E^,Hr,H u as linear functions of the transforms E z , H z and

their derivatives. In addition to E,, H, and their derivatives, however,

the values of the field components on the input plane z = now
enter these formulas explicitly. All details of the analysis were

deferred to (13) and again I proceed directly to the solutions (writing

down only those components which enter the boundary conditions [3]

explicitly)

:

E, = A„(s)I„(Tr) + P„(r)

E
,

ins w<
= A (s)I (Tr) B (s)I'(Tr)

T-r " " T " n

1 f ins d<f>

- — Pn(r) - io,,u —

-

T2 L r dr

H, = B„(s)I„(Tr) + *„(r)

H
,

\ V) t ins
= A (s)I'(Tr)- B (s)l (Tr)

, T n n J2 r " n

E,(r)

J [16]

1 r ins "I— i ())e(dP„/dr) + n (r) + H,(r)

In [16], T- — _(s- + k-), T being that value of the root which re-

duces to /32 _ k- when s = ip, § being real with |/3|>k. The quantities

P„(r), 0,,(r), Ej(r), H,(r) are explicit functions of the field com-
ponents at z = 0, supposed known. The boundary conditions [3]

were now applied to [16], which are written here in the form

E + Z<"»H = 0, E - Z""H =
1 Q (1 2 *

[17]
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at r = B. When this was done, I obtained the coefficients An(s),B„(s)

A„(s) =

[W ] ins
r(TB)_Z""I (TB) F (s) + Z< n >I (TB)G (s)

Tf
n 2 n J ii X2B 1 ' "

D„(s)

[18]

I„(TB)F„(s) 4- I (TB) _ —'

—

Z ( »'I'(TB) G„l
L n T 1

n J

[19]

ins
I„(TB)F„(s) 4- I I (TB) - - —Z<»>r(TB) I G„(s)

T-'B L " T i » J
B„(s) =

D„(s)

where, in [25],

D„(s) = 1 (TB) _ -^-Z<">I'(TB) ——r(TB)-Z<»>I (TB)
L" Tl" J L T " 2 ii J

Tns 1 2 Z(»)

+ L(TB) i

Lt-'B J

Z, f dP„ I ins 1
F„(s) = -P„(B) + W I R + MB) + H,(B)

T2 L dr I
rrzB B J

1 T ins d*„ + E,(B)1
G„(s) = Z»0„(B) + — P„(B) - w —- V_R

T- L B dr r—K J

It is precisely here—in the relations [17]- [19]—that the possi-

bility of a far-reaching- extension of the wall impedance notion is

seen; since the other terms in [17] are the Laplace transforms of the

field quantities, rather than the fields themselves, it followed that

I was at perfect liberty to take for Z ,n) and Z (n
> not merely constant

values, but any functions of s for which the transforms possess

inverses. I thus allowed Z ( "', Z"" to be any analytic functions

Z (n) (s), Z (n) (s), not necessarily constant, in all the general formulas

of this section.

Expressions [16]-[19] now gave the Laplace transforms of all

components of the field vectors. In particular,

E z (r,n,s, („) - P„(r)

hot* i
ins

I'(TB)-Z<">I (TB) F (s)+ Z'»»I (TB)G (s) [20]
L T " 2 n J n t-'B i '

n

+
D„(s)

and thus, integrating along the usual Bromwich path,

h + i cc

E,(W ,W ) = -L fs<(1,n , Si , ii)e
.d ,

w
h_i
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giving the n-th Fourier component of Ez, and h has the usual mean-

ing for inversions of Laplace transforms. To obtain the total com-

ponent Ez , [21] was multiplied by exp(in <p) and sum over all integral

values of n. From the formulas of this section, an altogether similar

representation of LL was obtained.

Some Remarks on the Inverse Transforms in the

Axially Symmetric Case

When n = 0, the expressions simplify greatly. In particular,

E,(r,z,0) ) =
h + i co h + i x

_1_ r F.(B)I.(Tr)e-d» _ - + — ( P.(r)e«d. f 22 l

'"h-icc MTB) - ^-Z,(s,.,(TB,
2A

h_i -A

We chose some particular values at z = for which [22] assumes

an especially simple form, the functions F„(s), P„(r) being then

explicitly evaluable. Suppose that all components of the field vectors,

together with their derivatives, vanish at z = on 0^r<B, except

for E, only, and that E z (r,0,w ) = E„ = const. Then E,(r) = sE„,

H-(B) — 0, whereupon [22] becomes

h + i x i 0) <

E„B^ r I,(TB) K„(TB) +—"Z,K,(TB )

E z (r,z„„) . I„(Tr)e«sds
2tti .; TB I„(TB) _ h" (—Z,L(TB)

T

[23]

h 4- i

E„ /* T s TBKaTB)!
H + L(Tr)s e szds

2yri -
;

[ T " T " J

h - i x

I concluded with a suitable qualitative discussion of [23], since the

purpose of this special case (although of some technical interest in

itself) was to bring out the main features of the propagation as

directly as possible. Let us recall that T is now the function of s

defined by T- = — (s- + k- ), made unique as already described above.

Obviously, the branch points of T are s = ± ik; are these also branch

points of the integrands in [23]? First, I,.(x) is an even entire func-

tion, and so I„(Tr) is an entire function of s for each r. The same is

true of L(x)/x. Since Z,(s) is analytic, it follows that the only singu-

i(.)«

larities of the first integrand of [23] due to I„(TB) _ Z,(s)I,(TB)
T

are poles. However, K„(x) and K,(x) both have logarithmic branch

points at x = 0, hence the points s = ± ik are branch points of K„(TB)

iw<

+ Z,(s)K,(TB), and thus of the whole first integrand function.
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For the second integral in [23], the points ± ik are both simple poles

(of s/T2) and branch points (of the second summand). A suitable

contour for the integration is the path C« shown in Figure 5, where

I introduced the path —oo±ik as the branch cut. Thus Ctt encloses

neither branch point. For each of the integrals in [23], I wrote

[24]

h + iR

/ - / - /
h-iR C C

R R'

where C is that part of the contour other than the vertical segment
R'

joining the points h ± iR. As R-»oc, the integral on the left in [24]

approaches an integral in [23]. On the other hand, the first integral

on the right in [24] gives the sum of the residues of the integrand

at its poles. In the case Zi = const, with kB (iZi/Z )>2, these (simple)

poles are the roots of [13a] already discussed. Taking the sum of

residues at all these simple poles for the first integrand in [23],

essentially the series [15] was obtained, with the coefficients A ,Ci,C 2 ,

. . . all determined uniquely. However, more was obtained: the second

integral in [23] yielded waves which propagate without attenuation

at the velocity c, unaffected by the boundary conditions. There will

also be contributions from both integrals due to the branch points,

as the radius of the small circles drawn around each branch point

was made to tend to zero. I conjectured that the role of the branch

point contribution was essentially mathematical rather than physical,

causing the solution to satisfy both Maxwell's equations and the boundary

conditions on the open domain V: z>0, i.e., arbitrarily near z = 0.

At some distance from the source plane z = 0, it was the residue

series that was the physically significant part of the solution.

Conclusions. Some Further Remarks on the Literature

The impedance-wall boundary value problem has been formulated

precisely for cylindrical domains. The solution of the axially symmetric,

constant-impedance case was determined to within detailed examina-

tion of certain contour integrals in the complex plane. Those integrals

represent inverse Laplace transforms, the introduction of which was
necessary because of the lack of mode completeness on the entire

open domain V. Contour integral representations for the general

case were given. I found, in particular, that the Laplace transform

allowed me to handle a class of problems in which the wall impedances

are functions of position on the boundary r = B. A case of special

technical interest is that in which the generalized wall impedances
Z (n) (s), Z (n>(s) are Laplace transforms of periodic functions of z. On

1 2

the basis of preliminary analyses already made by me, I conjecture

that the solutions in such a case will have the properties of fields in

actual periodic structures.
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Figure 5. The contour Cr for inversion of the transform Ez (r,s,w) in § h- The contour

avoids the purely imaginary branch points ±ik, as well as the simple poles iXn lying

on the Im s axis. (iXn denotes those poles < k in absolute value.) In the limit as

R-^-oo and the radii of the small circles about ±ik tend to zero, the right-hand side

of [23] tends to the wanted field components Ez (r,z,w).

I wish to thank the referee for his constructively critical remarks,

and to conclude with some observations relevant to the points raised by

him.

I presume it is clear to the reader from the authors cited in

my introduction that the notion of surface impedance is not original

with me. Indeed, I do not know by whom the concept was first clearly

formulated and used in the sense here employed, viz., as a technique

for approximate solution of boundary value problems in electromag-

netic theory. I am, in fact, unaware of any published critique of the

notion per se. The idea of an impedance manifold which, in some
sense, guides or "supports" the propagation of electromagnetic waves,

seems to be simply a tool used ad hoc for the approximate solution

of problems, problems for which an exact solution may be unavailable
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or secured only at the expense of unjustifiably great labor. This

ad hoc character becomes clear from the recent literature. Thus Ber-

nardi and Valdoni (2) apply the notion of impedance wall ". . . to

solve the problem of the propagation of TE zero-order modes in a

rectangular waveguide, loaded by a thin and high dielectric constant

slab against one side wall . . .". Tsandoulas (15) studied the character

of a radiation field "due to a surface wave propagating along a

rod waveguide having a surface impedance varying linearly with dis-

tance along the direction of propagation . . .". A similar application

was given by Kritikos (8). The special nature of the problems con-

sidered is especially to be noted in all these cases. Bahar (1) and

Gallawa (6) were chiefly interested in the development of impedance-

wall models applicable to propagation between the earth and the

ionosphere. Wait (19), in the same spirit, studied ". . . the modes
which will be excited between two parallel [plane] impedance bounda-

ries . . .". Savard (10) developed a theory ". . . in which the boundary
conditions at [a cylindrical] guide surface are specified by an im-

pedance dyadic . . ." for the study of certain surface-wave phenomena.
It is clear that Savard has no such problems in mind as are here

contemplated although some of my expressions bear a formal re-

semblance to his. Perhaps the best introduction to the notion of

an impedance surface is to be found in the excellent expository article

of Borgnis and Papas (4) who, without much ado, simply apply the

notion to particular problems when and where it suited them.

My own exploitation of the notion of impedance wall is somewhat
less special than that of our colleagues cited. Although I began by
formulating the problem abstractly, in the interest of clarity of ex-

position, I consider that the chief merit of my work consists in pointing

out that the impedance wall concept is capable of yielding models of

propagation in guides for which the wall impedance is an "arbitrary"

function of position on the (cylindrical) wall. As I have pointed out,

my own interest lies mainly in the development of models for slow

wave guides. However, it was my abstract formulation at the outset

which led me to such a general conclusion.
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