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ABSTRACT: A set of orthogonal functions was constructed for use as a basis

set in quantum mechanical energy calculations. Specifically, the functions

have the correct asymptotic behavior appropriate for all one-dimensional local-

ized potentials. The results of these calculations are reported for several poten-

tial wells and compared with calculations using Hermite Functions.

KEYWORDS: Computational physics, orthogonal polynomials, quantum

mechanics.

INTRODUCTION

In classical physics, a particle confined to an attractive potential will oscil-

late, and the details of the motion, such as frequency and amplitude, are deter-

mined by the particle's energy. This energy can take any value from zero (no

motion) up to the binding energy of the potential. According to quantum mechan-

ics, however, the energy of oscillation is constrained to take on a value from a

discrete set of allowed energies or eigenvalues. The calculation of the energy

eigenvalues for a particular potential is a central problem of quantum mechan-

ics, and many methods have been developed to solve it.

Fundamentally, all methods must find the eigenvalues of the time-indepen-

dent Schrodinger Equation. In one dimension, this takes the form

ft
2 d2

y/ xr( r

2m dx

Here, m is the particle's mass, V(x) is the potential, \\f is the particle's wave-

function, and h is Planck's Constant divided by 2n. When appropriate boundary

conditions are applied to i|i, the particle's energy, E, is found to have a discrete

spectrum.

A powerful method for solving the Schrodinger Equation is the Variational

Method (Schiff, 1968). This method takes advantage of the fact that the wave-

function is an element of a Hilbert Space. Specifically, one can choose a com-

plete set of functions as a basis and express the wavefunction as a linear combination

of these basis functions. The choice of basis is essentially arbitrary, but each

basis function must satisfy the boundary conditions of the problem. As a prac-

tical matter, the basis is chosen to be orthonormal, for then the calculations are
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greatly simplified. By orthonormal, we mean: let the nth basis function be c|)n(x),

and its complex conjugate be <|>n*(x). Then, for every pair of m and n

0—00 *

Here, 8m n is the Kronecker Delta, which equals one if m = n and is zero other-

wise.

Once the basis is chosen, the calculations are almost rote. A Hamiltonian

matrix, H, is constructed, the elements of which are

(Normally, for time-independent problems, cf> is chosen to be a real function and

<()* becomes (().) The eigenvalues of the matrix are the allowed energies of the

potential, and the eigenvectors give the wavefunctions as a linear combination

of the basis functions.

The size of the basis set, and hence of the H matrix, is chosen by the inves-

tigator with the understanding that only an infinite basis can be expected to pro-

duce exact eigenvalues. A finite basis set produces approximate energies, and

normally, enlarging the set improves the accuracy. The rate of convergence, how-

ever, is sensitive to the choice of basis.

CHOICE OF BASIS

Since little is required of the basis functions other than the necessity of sat-

isfying the boundary conditions, it seems reasonable to look at these conditions

when selecting the basis. In this work, we are interested in all one dimensional,

localized potential wells. By localized, we mean that V(x) — as x — ± °o. For

such potentials, the wavefunction tends to zero as x — ± °°. However, we can be

more specific. For Ixl large, V —
» and the energy of the system is all kinetic.

Therefore, p
2/2m « E and p « \2mE. Expressing this in the language of quan-

tum operators, we have

dx *

(E < for bound states). This equation has the solution

y = ce
±kx

, k = Jln\E\lh,
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with c an arbitrary constant. The boundary conditions require choosing the sign

so that i|i
— as Ixl

— «>. Therefore, i|/ ~ ce+kx
for x < and \\j ~ ce kx

for x > 0.

A common choice of basis is Hn(x) e x /2
, where Hn is a (normalized) Hermite

Polynomial. The Hermite Polynomials satisfy the Schrodinger Equation for the

case V(x) = x2
/2, and, therefore, are automatically orthogonal (with respect to

the weight function e
x /2

) and form a complete set (Abramowitz and Stegun, 1964;

Erdelyi, 1953; Szego, 1975). However, since V(x) = x 2
/2 is not localized, the

Hermite Functions vanish more rapidly than e \ going to zero as e x
as x goes

to infinity. In light of the previous discussion, then, it seems reasonable to search

for a set of functions that share the above properties but vanish as e
±x

. One such

function is sech(x), since

Sech(x)

=

e + e

Therefore, it is necessary to construct polynomials Vn(x), orthogonal with respect

to sech2
(x) for then our basis functions could be chosen as Vn(x) sech(x). The

orthonormality condition becomes

[x Vm (x)Vn (x)sech\x)dx = SmtH

Pickett (in press) has constructed these polynomials. The first few are

V (x) = 1

V
1
(x) = x

V2(x) = x2
- 1/12

V
3
(x) = x3

- (7/20)x

V4(x) = x4
- (13/14)x 2 + 27/560

(Actually, these polynomials have been constructed to be orthogonal with respect

to sech2
(7cx) rather than sech2

(x). This constitutes a minor detail and was done

to avoid cumbersome powers of n in the coefficients.) As written, these func-

tions are not normalized. Each must be multiplied by

h = (2/*X» f

)

4

^4"(2« + l)[(2«-l)!!]
:

All orthogonal polynomials satisfy a three term recurrence relation (Abramowitz

and Stegun, 1964; Erdelyi, 1953; Szego, 1975). The polynomials Vn(x) satisfy
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V
n
^(x) = xV

n
(x)-C

n
V^(x\ C

n
=

n
4

4{2n - \){2n + l)

The recurrence provides a relatively simple method for calculating the basis func-

tions.

CALCULATIONS

We tested the polynomials by using them to calculate energies for three poten-

tials: the finite square well, e x
, and sech2

(x). We began with sixteen functions

in the basis, then enlarged it to twenty, and then to twenty-six. Each calculation

was timed and compared to calculations using Hermite Functions as well as to

the actual energy values. All of the basis set calculations were performed with

Mathematica® on an Intel® 486 33 MHZ processor.

For purposes of numerical solution, the Schrodinger Equation must be cast

into dimensionless form. Since our potentials are chosen rather than determined

by data, this is easily done by adopting machine units for the various physical

dimensions of the problem. In our calculations, we have set m = 1 mass unit,

h - 1 action unit, and x can be taken as a dimensionless variable measuring length

units.

V(x) = V sech2
(x). This potential was chosen because it is localized and

the energies are known exactly (Landau and Lifshitz, 1977). The well depth, V ,

was chosen as follows. For this potential, the number of bound states is given as

the largest integer not exceeding s, where

(l + ViTs^)

We wanted all of our trial potentials to have a depth that was about midway

between those that would bind six and seven states. Therefore, we chose

V = -143/8 (s = 6V2).

In the calculations, it is possible to generalize the basis functions by writing

them as Vn(bx/jc)sech(bx) with b an adjustable parameter. A similar conversion

is possible for the Hermite Functions. We chose b by finding the value that min-

imized the maximum error in the 16 x 16 cases. That is, in each calculation, six

energies are computed, and b is chosen to minimize the largest of the six

errors. In general, the optimum value of b for the 16 x 16 case will not opti-

mize the 20 x 20 case, or any other basis set size. However, once the parameter

had been chosen in this way, its value was considered permanent, even when the

basis was enlarged. This reflects the fact that, in practice, one doesn't know the

energies in advance and has no way to compute a new parameter as the basis is
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Table 1. A comparison of the calculated energies of the potential well V(x)

(-143/8)sech2
(x) using Hermite Functions and Sech Functions.

Basis Set Size

True Energies 16x16 20x20 26x26

Hermite Functions

E -15.125000 -15.122276 -15.124390 -15.124926

E, -10.125000 -10.114147 -10.122343 -10.124646

E2
-6.125000 -6.085141 -6.114609 -6.123532

E3
-3.125000 -3.081641 -3.112872 -3.123165

E4 -1.125000 -1.067728 -1.108258 -1.122517

E5
-0.125000 -0.057308 -0.096037 -0.116561

Calculational Time 220 sec 550 sec 1754 sec

Sech Functions

E -15.125000 -15.124807 -15.124951 -15.124991

E, -10.125000 -10.123977 -10.124714 -10.124942

E2
-6.125000 -6.120332 -6.123705 -6.124741

E3
-3.125000 -3.119102 -3.123217 -3.124610

E4 -1.125000 -1.116973 -1.122574 -1.124475

E5
-0.125000 -0.120390 -0.123903 -0.124684

Calculational Time 356 sec 1091 sec 4948 sec

Table 2. A comparison of the relative errors (%) of the calculated energies of the poten-

tial V(x) = (-143/8)sech2
(x) using Hermite Functions and Sech Functions.

Basis Set Size

16 x 16 20x20 26x26

Hermite Functions

E„ 0.018010 0.004033 0.000492

E, 0.107188 0.026241 0.003498

E2 0.650764 0.169649 0.023960

E3 1.387501 0.388096 0.058724

E4 5.090839 1.488143 0.220687

E5 54.153337 23.170524 6.750982

Sech Functions

E 0.001273 0.000322 0.000058

E, 0.010108 0.002825 0.000568

E2 0.076219 0.021137 0.004227

E3 0.188726 0.057062 0.012493

E4 0.713498 0.215644 0.046691

E
5 3.688075 0.877895 0.252670
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enlarged. The optimizing parameter for the Hermite Functions in this case has

the value b = 1.197566, while that for the sech polynomials is b = 3.9291591.

The results of the calculations for this potential are shown in Tables 1 and

2 along with the correct energies and the results using the Hermite Functions.

A proper comparison must also include the amount of time spent computing, and

those data are also listed in the tables.

The Finite Square Well (V(x) = for x > 1 and x < -1; for -1 < x < 1, V =

-121tt
2
/32). The well depth was chosen as the mean of the values that would just

accommodate six and seven states. The actual energies are transcendental but

can easily be calculated numerically (French and Taylor, 1978; Schiff, 1968).

For this potential, the optimizing parameters take on the values b = 3.442024 for

the Hermite Functions and b = 12.024734 for the sech polynomials. The results

are shown in Tables 3 and 4.

V(x) = V e
x

. Using the same criterion for depth as for the square well, we
arrive at V = -27.44171. To obtain the actual energy eigenvalues, we used a

numerical method known as the Numerov Technique (French and Taylor,

1978; Griffin and McGhie, 1973). The idea is to numerically integrate the

Schrodinger Equation from x = out to x — ©o, starting with i|i(0) = and i[/(0)

= 1 for odd states and vp(0) = 1 and i|/(0) = for even states. Energy values in

the equation are chosen by trial and error; the quality of the choice is judged by

how close \\} fits the boundary condition. For these potentials that condition is

\\f
—

as x — °o. A poor choice of E results in \\f diverging quickly, while better

choices of E keep \\f near zero over a larger range of values. Again, parameter

values were chosen to minimize the maximum error in the 16 x 16 case; the val-

ues are b = 1.645977 for the Hermite Functions and b = 5.247306 for the sech

polynomials. The results for this potential are shown in Tables 5 and 6. The

true energy values given in the tables are accurate to the number of digits shown.

CONCLUSIONS

The results given in Tables 1-6 show some consistent patterns. First,

except for the square well potential, the calculations using the sech polynomi-

als give better energies than those using Hermite Functions. This is true for the

small basis sets and remains so as the sets are enlarged, although the low ener-

gy states of the e x potential calculated with Hermite Functions have "caught up"

in the 26 x 26 case.

The square well is the exception. We do not know what, if anything, makes

this case different. With only three potentials investigated, a sweeping general-

ization should not be made, but should it prove true that the sech polynomials

give better accuracy for the general case, the square well results are anom-

alous. It may be that the discontinuity in the potential's derivative is responsi-

ble; however, it is not clear why that should affect the Sech Functions so much
more than the Hermite Functions. Clearly, more work is warranted here.

A second observation is that the calculations are much faster using Her-

mite Functions. All of the computation times, for both basis sets, show a con-
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Table 3. A comparison of the calculated energies of the square well potential using

Hermite Functions and Sech Functions.

True Energies 16x16
Basis Set Size

20x20 26x26

Hermite Functions

E -36.329354 -36.326241 -36.327061 -36.328040

E, -33.370612 -33.356871 -33.361853 -33.365399

Ej -28.481947 -28.453676 -28.460959 -28.470079

E3
-21.746346 -21.692373 -21.709459 -21.725061

E4 -13.346977 -13.268379 -13.286394 -13.314615

E5
-3.853913 -3.733395 -3.737808 -3.801060

Calculational Time 199 sec 517 sec 1708 sec

Sech Functions

E -36.329354 -36.318742 -36.320752 -36.324656

E, -33.370612 -33.320784 -33.342425 -33.354259

E2
-28.481947 -28.373490 -28.398686 -28.435904

E3
-21.746346 -21.535710 -21.611499 -21.677984

E4 -13.346977 -12.927119 -13.108181 -13.199459

E5
-3.853913 -3.485023 -3.514844 -3.709793

Calculational Time 347 sec 1042 sec 4960 sec

Table 4. A comparison of the relative errors (%) of the calculated energies of the square

well potential using Hermite Functions and Sech Functions.

16x 16

Basis Set Size

20x20 26x26

Hermite Functions

E„ 0.008570

E, 0.041176

E2 0.099258

E, 0.248192

E4 0.588883

E5 3.127162

Sech Functions

E 0.029212

E, 0.149318

E2 0.380791

E3 0.968603

E4 3.145717

E5 9.571833

0.006313 0.003617

0.026247 0.015622

0.073688 0.041669

0.169622 0.097878

0.453909 0.242463

3.012638 1.371418

0.023679 0.012931

0.084466 0.049002

0.292327 0.161655

0.620089 0.314360

1.789137 1.105252

8.798044 3.739581
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Table 5. A comparison of the calculated energies of the potential well V(x) = V exp(-

x2
) using Hermite Functions and Sech Functions.

True Energies 16x16
Basic Set Size

20x20 26x26

Hermite Functions

E -23.92594 -23.925830 -23.925927 -23.925938

E, -17.29571 -17.295096 -17.295643 -17.295705

E2
-11.50453 -11.499700 -11.503953 -11.504522

E3
-6.642870 -6.635298 -6.641860 -6.642747

E4
-2.856653 -2.834841 -2.853567 -2.856632

E5
-0.442474 -0.393145 -0.425211 -0.437564

Calculational Time 227 sec 558 sec 1763 sec

Sech Functions

E -23.92594 -23.925920 -23.925930 -23.925936

E, -17.29571 -17.295640 -17.295666 -17.295696

E2 -11.50453 -11.504378 -11.504399 -11.504461

E3
-6.642870 -6.642563 -6.642688 -6.642748

E4 -2.856653 -2.854934 -2.856453 -2.856485

E5
-0.442474 -0.441446 -0.442270 -0.442378

Calculational Time 367 sec 1078 sec 5004 sec

Table 6. A comparison of the relative errors (%) of calculated energies of the potential

V(x) = V exp(-x2
) using Hermite Functions and Sech Functions.

16x16
Basis Set Size

20x20 26x26

Hermite Functions

E 0.000461

E, 0.003549

E2 0.041981

E
3

0.113993

E4 0.763535

E
5

11.148594

Sech Functions

E 0.000085

E, 0.000404

E2 0.001319

E3 0.004618

E4 0.060183

E5 0.232454

0.000051 0.000007

0.000388 0.000027

0.005019 0.000071

0.015200 0.001838

0.108046 0.000751

3.901441 1.109789

0.000043 0.000016

0.000253 0.000080

0.001142 0.000602

0.002735 0.001843

0.007016 0.005864

0.046211 0.021732
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sistent trend, independent of potential. Therefore, we conclude that the time-lim-

iting step involves the evaluation and integration of the basis functions. It is

not known to the authors what method Mathematica uses to evaluate Hermite

Polynomials, but the numerical analysis references such as Abramowitz and Ste-

gun (1964) give very efficient methods for well known functions such as these.

The Sech Polynomials have not been so thoroughly studied; in our investiga-

tions, we could find no faster method than the recurrence relation. Should a faster

method become available in the future, Sech Polynomials may provide the best

basis functions for calculating bound state energies of localized potentials.
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