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Introduction

Since the launch of the Landsat-1 satellite in 1972, the value of the scanner

data obtained from the Landsat satellites has been clearly established. Forest

cover types, hydrologic features, agricultural crops and soil patterns, as well as

other land use features can be identified and mapped using this satellite data. Be-

cause of the quantitative characteristics of such multispectral scanner data and the

very large area covered by each frame of Landsat date (over 8.5 million acres), com-

puter-aided analysis techniques are particularly effective for processing Landsat

data.

In 1982, a new generation of satellite scanner, called the Thematic Mapper,

will be launched aboard Landsat-D. The Thematic Mapper (TM) will have improved

spatial and spectral characteristics as compared with the previous satellite scanner

systems (i.e. 30 m vs. 80 m spatial resolution and seven relatively narrow vs. four

relatively broad wavelength bands). Because of the significant increase in the quan-

tity of data to be obtained and the improved spectral and spatial characteristics of

the TM data, it is important to compare the effectiveness of the proposed new

Thematic Mapper to the scanner system on board Landsats 1-3 and to define effec-

tive data analysis techniques for processing such data.

Objectives

(1) To compare classification results obtained using the best four bands (out

of the seven available TM wavelength bands) to results using the four bands most

closely approximating the current Landsat scanner.

(2) To compare the classification accuracy of a per-point Gaussian Maximum
Likelihood classifier (which classifies each resolution element independently, accord-

ing to its spectral characteristics) and a per-field classifier (which incorporates the

spatial as well as the spectral characteristics of the data into the classification

algorithm).

Background

Previous studies have shown that as the number of wavelength bands used to

classify MSS data increases, classification accuracy reaches a point of diminishing

returns in relation to the computer time required to classify the MSS data (1). This

relationship is clearly demonstrated by Figure 1. Even with recent advances in

computer technology and software, however, similar relationships are anticipated

when analyzing the Thematic Mapper data to be obtained from Landsat-D. Table 1

shows a comparison of the proposed TM channels with those of the current Land-

sat MSS system. In addition to the increased number of wavelength bands on the

TM, it will also have higher spatial resolution. This will allow it to obtain more
detailed spectral information from smaller areas on the ground (i.e. resolution

elements or pixels) then has previously been possible (5). However, it is possible

that higher interclass spectral variability may be introduced with this increase in
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Figure 1. Overall classification accuracy and computer time required in relation

to the number of channels used (from Ref IK

spatial resolution, thus increasing the potential for spectral overlap and intraclass

confusion.

Materials and Methods

Data for this study consisted of aircraft multispectral scanner data obtained

by NASA's NS001 Thematic Mapper Simulator (TMS). The data were obtained on
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Table 1. Wavelength Band Comparisons of the Landsat 1-3, NASA NS001 Scan-

ner and the Landsat D Thematic Mapper Scanner systems (wavelengths are in

micrometers).

Landsat 1-3

(4) 0.50-0.60 Mm

(5)0.60-0.70

(6) 0.70-0.80

(7) 0.80-1.10

NASA
NS001 Scanner

(1)0.45-0.52 nm

(2) 0.52-0.60

(3) 0.63-0.69

(4) 0.76-0.90

(5) 1.00 1.30

(6) 1.55-1.75 1

(7) 2.08-2.36

(8) 10.4-12.5

Landsat D
Thematic Mapper

(1) 0.45-0.52 Mm

(2) 0.52-0.60

(3) 0.63-0.69

(4) 0.76-0.90

(5) 1.55-1.75

(6) 2.08-2.36

(7) 10.40-12.5

*On the May 2, 1979 mission, the 1.55-1.75 /im band was not functional, so on the resultant data tape, the

2.08-2.36 /itn band was designated as Channel 6 and the 10.4-12.5 /im band was designated as Channel 7.

May 2, 1979 over a study site in South Carolina near the city of Camden. The pre-

dominance of large contiguous tracts of forest (primarily bottomland hardwoods),

in addition to minimal topographic relief made this a good site for this study. This

area has also been designated by the U.S. Forest Service as one of two primary test

sites for evaluating various remote sensing techniques for potential use in forest in-

ventories.

Various cover classes (Table 2) were located in the TMS multispectral data by

the analyst and class statistics were obtained using a supervised method for

Table 2. Description of the Cover Classes Defined for the Camden Study Area.

Cover Class Description of Cover Class

TUPELO

CROP

PASTURE

SOIL

HARDWOOD

CLEARCUT

PINE

WATER

Water tupelo; generally restricted to narrow ox-bow lakes and other areas of inun-

dated soils.

Row crops and small grain crops in varying stages of development and maturity.

Pasture and old fields; plant cover varies from healthy improved pasture grasses

to senescent forbs and invader species.

Bare soil areas associated with agricultural activities; varies in sand, clay, and

organic material content as well as moisture content.

Old age bottom-land and second growth hardwood; sweetgum is the dominant

species in the older age classes with a diverse species composition in the

younger age classes.

Areas subjected to clearcut forestry practices; ground cover comprised of dry to in-

undated soils without vegetation, to dense vegetative cover of slash, grasses,

shrubs and residual trees. Windrowed slash is common.

Pine forest areas; the principle species is slash; longleaf, and loblolly are common;

age class varies from recently planted (5-10 years) to mature, closed canopy.

Water; primarily associated with the Wateree River (approximately 70-90 meters

in width). Other areas comprising the water class are associated with surface

mining and open marsh.
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developing training data (1). The computer-generated statistics from the training

fields consist of the means and variances of all spectral classes representing the

various cover classes in each of the seven channels available. These statistics are

used to 'train' the computer and pattern recognition techniques (7) are then applied

in order to identify these same spectral classes in the remainder of the MSS data.

Test fields of known cover types were also defined for use in evaluating the class-

ification results. These fields were selected using a test grid of dimensions 50 lines

by 50 columns. Test blocks, 25 by 25 pixels (i.e. resolution elements) in size, were

located in the southwest quadrat of each grid intersection. The largest possible

field of every cover type present within each 25 by 25 test cell was located and

defined as a test field for that particular class.

To define the 'optimum' four channel subset of the seven available channels,

the training statistics were used to define an average transformed divergence (TD)

value. This TD value provides a measure of statistical separability of the various

spectral classes, and is described in detail in Swain and Davis (7). Pairwise TD
values between all spectral classes were averaged for all combinations of four out

of the seven TMS channels. The four channel subset with the largest average TD
value was then designated as the 'optimum' or 'best' combination for use with this

data. Channels 2, 4, 5 and 7 (see Table 1) provided the largest average TD value and

were therefore used as the optimum set with which to compare channels 2, 3, 4 and

5, (which were used to stimulate the existing Landsat MSS system) in all subse-

quent analyses.

The first of the two classifiers used in this study was the GML or Gaussian

Maximum Likelihood classifier, a widely used classification algorithm in remote

sensing applications. Assumptions upon which this algorithm is based include an

absolutely continuous n-variate spectral response vector and multivariate normal

class conditional probability density functions (PDF's) (7). Usually these assump-

tions are not completely satisfied due to the quantification of the spectral response

in each channel into distinct response levels, and because of the inherent variability

in spectral response of natural cover features. However, deviations from these

assumptions are often slight and many classifiers, including the GML, are 'robust'

in their tolerance of such violations (4), (7).

The GML classifier is based upon the Bayes' optimal strategy which

minimizes the average loss over the entire set of classifications to be performed,

i.e. it minimizes the probability of error over the entire data set to be classified and,

in so doing, maximizes the probability of correct classification (PCC) (7). In general,

this classifier is the most accurate classifier available. However, because the in-

dividual pixels are classified based upon spectral information alone, pixels within a

particular spectral class may deviate from the class conditional PDF (probability

density function) for that spectral class enough so as to be misclassified into

another cover class. In other words, one spectral class may represent more than

one cover class due to the high interclass variabilities of those cover classes; i.e.

significant spectral overlap between two or more cover classes may occur. Conse-

quently, a decision rule such as the GML, which is based upon spectral information

alone, may have poor classification performance if there is poor spectral separability

between cover classes.

One method of alleviating such difficulties is to incorporate additional informa-

tion, such as contextual information about adjacent pixels, into the decision rule.

The second classifier used in this study, the ECHO (Extraction and Classification of
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Homogeneous Objects) classifier, incorporates both spectral and spatial informa-

tion in the classification sequence and is divided into the following two basic steps:

1) The MSS imagery is partitioned into areas or blocks of statistically sim-

ilar pixels — a conjunctive approach is used in which small initial n x n homogeneous

cells are progressively annexed to adjacent homogeneous cells of similar spectral

response until a specified annexation threshold (defined by the analyst) is exceeded.

2) Once the areas of similar spectral characteristics have been determined,

statistics representing the PDF's of each of these areas are calculated and compar-

ed with the PDF's characterizing all the original m spectral classes, i.e. those spec-

tral classes used to 'train' the computer, and each homogeneous area is then class-

ified, using an extension of the GML algorithm, into that cover class which its PDF
most closely approximates.

If at any time a cell of initial n x n dimensions fails a specified homogeneity

criteria, then each individual pixel within that cell will be classified using the stan-

dard per-pixel GML classifier. For a detailed discussion of the procedure please

refer to Kettig and Landgrebe (2), Landgrebe and Erickson (3), and Latty (4).

An arcsin transformation in conjunction with a Newman-Keuls range test was

used to compare the classification accuracies achieved (i.e. the PCC values attain-

ed) (6).

Results and Discussion

Tables 3, 4 and 5 present the results associated with each of the classifications

performed in this study along with the number of test samples and the PCC (prob-

ability of correct classification) for each cover class. The PCC for each cover class is

found by dividing the sum of correctly classified samples (test pixels) by the total

number of text pixels for that cover class. Likewise, overall classification perform-

ances are obtained from the sum of all correctly classified pixels from all cover

classes divided by the entire number of test samples, i.e. 11,202. Table 6 summar-
izes the results of all classifications performed and also indicates the results of the

Newman-Keuls range test.

Table 3. Classification results based on test field accuracy using the Gaussian

Maximum Likelihood (GML) classification algorithm and simulated Landsat

wavelength bands (Channels 2, 3, 4, and 51. 1

GROUP
No. of PCT
SAMPS CORCT

775 92.6

PINE HDWD TUPE CCUT PAST CROP SOIL WATER

PINE 718 4 35 16 2

HDWD 7951 89.1 273 7081 174 316 18 8 57 24

TUPE 126 78.3 8 94 7 8 2 1

CCUT 370 51.4 81 190 77 1 15 6

PAST 350 71.1 28 49 249 24

CROP 324 76.4 3 82 278 1

SOIL 1006 90.3 76 15 908 7

WATER 300 86.3 4 32 1 2 2 259

TOTAL 11,202

Overall Ptrforma
9777

nee = =

11,202

87.3%

Channel 2 = 0.52-0.60 ^m; Channel 3 = 0.63-0.69 fitn: Channel 4 = 0.76-0.90 Mm; and Channel 5 = 1.00-1.30 pm.
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Table 4. Classification results based on test field accuracy using the Gaussian

Maximum Likelihood (GML) classification algorithm and the "Best 4" wavelength

bands (Channels 2, k, 5, and 7).
1

No. of PCT
GROUP SAMPS CORCT

775 91.0

PINE HDWD TUPE CCUT PAST CROP SOIL WATER

PINE 705 4 40 26

HDWD 7951 88.0 280 6998 146 375 65 26 60 1

TUPE 126 59.2 4 75 7 5 34 1

CCUT 370 60.5 48 224 49 49

PAST 350 82.6 2 1 38 289 20

CROP 324 77.2 1 7 2 63 250

SOIL 1006 85.6 123 19 861

WATER 300 78.7 3 2 55 1 3 236

TOTAL 11,202

Overall performance =

l Channel2 = 0.52-0.60 ^m; Channel 4 = 0.76-0.90 ^m; Channel 5 = 1.00-1.30 jim; and Channel 7 = 10.4-12.8 /tm.

The superscripts in Table 6 indicate the statistical evaluation of the results ob-

tained within a particular cover class and for overall performances of the three

classifications using the Newman-Keuls range test at an alpha level of 0.10. Dif-

ferent superscripts indicates that the results for that cover type or for the overall

performances were significantly different; those cover types having the same
superscripts are not statistically different.

Table 5. Classification results based on test field accuracy using the ECHO
classification algorithm and the "Best -4" wavelength bands (Channels 2, -4, 5, and

7)J

No. of PCT
GROUP SAMPS CORCT PINE HDWD TUPE CCUT PAST CROP SOIL WATER

PINE 775 92.9 720 1 18 36

HDWD 7951 92.8 169 7382 40 250 92 18

TUPE 126 60.3 9 76 6 3 31 1

CCUT 370 58.9 41 218 65 46

PAST 350 85.7 1 35 300 14

CROP 324 81.5 8 52 264

SOIL 1006 85.7 1 120 20 862 3

WATER 300 77.7 3 2 58 1 3 233

TOTAL 11,202

Overall Performanee = 10055 = 89.7%

11,202

Channel 2 = 0.52-0.60 /xm; Channel 4 = 0.76-0.90 /xm; Channel 5 = 1.00-1.30 fim; and Channel 7 = 10.4-12.8 /tm.
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Table 6. Summary Comparison of Classification Results (°/o Accuracy of Test

Fields).

Wavebands and Classifier Used

"Landsat" "Best 4" "Best 4"

No. of Wavebands,* TM Wavebands,2 TM Wavebands

Cover Type Samps GML Classifier

92.6°/o a3

GML Classifier

91.0°/o a

ECHO Classifier

PINE 775 92.9% a

HDWD 7951 89.1%a 88.0% b 92.8% c

TUPE 126 78.3°/o a 59.2% b 60.3% b

CCUT 370 51.4°/oa 60.5% b 58.9% b

PAST 350 71.1°/o a 82.6% b 85.7% b

CROP 324 76.4% a 77.2% a 81.5% a

SOIL 1006 90.3°/o a 85.6% b 85.7% b

WATER 300 86.3% a 78.7% b 77.7% b

OVERALL 87.3% a 86.0% b 89.7% c

'"Landsat" Wavebands included 2 visible and 2 near infrared wavebands -0.52-0.60, 0.63-0.69, 0.76-0.90, and

1.0-1.3 ;im.

zThe "Best 4" TM Wavebands were defined using a Transformed Divergence Algorithm as a measure of

statistical separability. Of the 7 TM Wavebands available, the "Best 4" included 1 visible, 2 near infrared, and

10.4-12.5 pm.

3For each cover type, or for the overall classification results, different superscript letters indicate a statistic-

ally significant difference, based upon a Newman-Keuls range test with a = 0.10. Comparison between Col. 1

and Col. 2 provides an indication of the effect of waveband combination, while comparison between Col. 2 and

Col. 3 indicates effect of the classification algorithm used.

The first and second columns of classification results shown in Table 6 com-

pare the Landsat channels with the 'best 4' selected by a maximum average TD
value. The second and third columns similarly compare the GML classifier with the

ECHO classifier. It is interesting to note that even though the overall performance

obtained by the ECHO classifier was significantly better than either of the other

classifications, only the Hardwood cover class showed significant difference be-

tween the GML and ECHO classifiers using channels 2, 4, 5 and 7. This might in-

dicate that with cover classes of large spectral variability, such as the hardwood

category, a significant increase in classification performance can be obtained using

a per-field classifier. The other cover classes were much more spectrally distinct,

i.e. had lower spectral variability, and hence performed as well using either

classifier. The increase in overall classification performance was subsequently a

result of the increase in the performance of the hardwood category, largely

because the number of hardwood pixels greatly exceeded those of all other

categories and therefore carried more weight in the calculation of overall perfor-

mance. In addition, these results imply certain limitations associated with the

average TD values as criteria for selecting an optimal subset of channels; i.e., in

this study, even though channels 2, 4, 5 and 7 were chosen as the 'optimal' using an

average TD value, channels 2, 3, 4 and 5 (simulated Landsat) still achieved higher

overall classification accuracies using the GML classifier. One possible explanation

for this is that both the transformed divergence measurement and the GML
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classification algorithm incorporate class a priori probabilities in their calculations.

In this and many other remote sensing applications, these class a priori prob-

abilities are assumed to be equal, but this is rarely the case. Therefore, those

classes with higher class priori probabilities of occurrance may be discriminated

against in favor of those classes of lower a priori probabilities, thus resulting in a

lower overall classification performance.

Conclusions

The conclusions reached in this study can be summarized as follows:

1) Increased classification performances were demonstrated for some cover

types and for the overall classification performance when using the ECHO
classifier, as compared to the per-point GML classifier. Although statistically

significant, the increased classification performances were relatively small in most

cases and may be essentially unimportant from the user's standpoint.

2) The ECHO classifier is particularly effective in classifying those cover

types of relatively high spectral variability, such as the hardwood cover class

category in this study.

3) For MSS data of higher spatial resolution, such as will be obtained by the

Thematic Mapper on Landsat-D, per-field algorithms such as ECHO, which utilize

both the spectral and spatial characteristics of the data, should be effective in

achieving improved classifications of areas of forest cover.

4) As a measure of statistical separability the transformed divergence (TD)

value has certain limitations when applied to MSS data sets and therefore may not

be a reliable indicator of the optimum subset of channels to use in the classification

if the areal extent of the different cover types involved are significantly different.
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