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In the front stagnation region of a viscous fluid flow around a blunt body there

occurs a kinetic energy conversion into pressure whose rate is affected by the

viscosity of the fluid.

The earliest mention of viscosity influence on the pressure at the stagnation

point of a sphere is made in a paper by Miss M. Barker (3). The author, having noticed

in experiments undertaken upon suggestion of G.I. Taylor that velocity mea-

surements with a Pitot-tube consistently gave, at low velocities, higher readings

than expected from the Bernoulli theorem, that is

(where p is the liquid density, Ua is the free stream velocity, p s
is the stagnation

pressure, and p^ is the pressure at infinity) tried to approach the problem by

calculating the stagnation pressure by means of Stokes law.

For very small Reynolds numbers Re = p U^R//* the stagnation pressure on

a sphere of radius R, given by Stokes law is

P s

-

Poo = A iHf?. [2]
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where \i is the viscosity of the liquid and R the radius of the sphere. For high

Reynolds numbers the stagnation pressure is the same as for an ideal fluid, since

viscosity effects, mostly in terms of boundary layer thickness, are negligible. Miss

Barker argued that, since for low Reynolds numbers
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and for high Reynolds numbers, on the contrary,
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both for low Re and for high Re an expression like

p s
-poo = lp\]J + i ^ [3]

2 2 R

should approximate the data. While the mid Re are somewhat more difficult to ex-

plain by means of this intuitive law, which can be rewritten as

c ps = p«-p°° = 1 + A , [4]
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2
/2 Re

269



270 Indiana Academy of Science

the author presents some data, about which she admits: "The accuracy with which

the points lie on this line is probably fortuitous, but a viscosity effect of a type sug-

gested is clearly demonstrated". While Miss Barker's formulation of [4] was in-

tuitive, the fact that the experimental points were falling on its graphical represen-

tation was not fortuitous. In fact, Homann (9) demonstrated that, for large Re, [4] is

the relationship between C ps and Re.

We point out that [4] was proposed for the stagnation pressure in front of a

sphere, and not of a cylinder. Since there is no equivalent of Stokes law for the case

of the cylinder, (10), the closest approach to an equation similar to [4] should be

done with an Oseen type solution, or Lamb's solution (14), whose results are,

however, valid only close to the cylinder's surface and for small Reynolds numbers.

The first author to conduct a comprehensive and systematic study of stagna-

tion pressure on the front generator of a cylinder is Thorn (17), followed by Thorn

(18). In the first paper the author, without mentioning the experimental finds of

Miss Barker, proposes different ways for the calculation of the viscous over-

pressure at the stagnation point on a cylinder. By using a boundary layer type of

reasoning he arrives at the expression

^i + ^_ A J_ _d?( PiEi_)
Re /v / 2 d02 pU 2

oo/2
. [5]

being 6 the angular polar coordinate. He recognizes that the radicand equals 4 for

ideal fluids, that it should be less than 4 for the most general case, and suggests a

value 3.5 for high Reynolds numbers, but he fails to give a general expression for

the radicand in terms of Reynolds numbers.

Nevertheless, the realization the C ps
= 1 + 4/Re (Thorn's law) is an upper

limit for the actual value of C ps , allows him to come up with experimental data that

satisfy that inequality.

For smaller Reynolds numbers, Thorn assumes that the stream function for

the flow around the cylinder is of the form \j/ = sin 6 S(r,0), where r is the radial

polar coordinate, and, for small values of 6, he is able to integrate numerically the

resulting equation by finite differences and, since of the conditions to be satisfied,

two are on one end of the range and two are on the other, he adopts a trial and error

technique, whereby, from an assumed tabulated relationship S(r), an improved

function is obtained.

The derivation of Thorn's law can be performed by following Homann (9) who

suggests to calculate the pressure at the front stagnation generator by integrating

the x component of the Navier-Stokes equations from -<x to -R, in the Cartesian

plane, along the x direction of the uniform stream, that is

l_dp = ro°u
+

o~u

y u
au

^ [6]

3 dx dx2 dy2 dx

where p is the fluid density, y the conjugate Cartesian coordinate, and u the velocity

of the flow along the x direction. The integration yields
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Since duldx is zero both at infinity and at the stagnation point, we can rewrite [7] as

R
Ps-P. U2

d v dx

ay 2

2

Re rU oo

dr,*

d£

[8]

where 77 = y/R, £ = x/R, v = u/Uqo.

For the particular case of ideal fluid flow (Re — 00) the expression for u can be

shown to be

[9]

[10]
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hich yields

dV
2 ^

v =

If we substitute [10] into [8] we obtain, with Homann [9]

c ps = 1 + A ,

Re
[11]

which is obviously valid only for Re —00. For any finite value of Re it is always

cfiy < _6 because the velocity reduction, caused by viscosity effects, tends to

drj2 £4

seperate the streamlines further away than in the ideal case along the approach x

axis. We can in fact assume that the streamfunction around the approach x axis can

be written as \p
i
(£, V_) if \p

i
(£, 77) is the ideal fluid steamfunction and rj (£) is a

vJL9

"spread" function, always larger than 1 for any £. Then,

d£2 dt)3

v = v =
3773

77=0

1 dH\
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-
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Therefore [11] is a limit law for C ps : for no value of Re one can find a value of

C ps larger than one given by [9].

As a concluding remark, referring to Figure 1, where the viscous over-

pressure coefficient C ps
-1 is plotted against Re we can observe that most reliable
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The coefficient fCps-l) as a function of Re. Curve a, Thorn's law (CtFigure 1.

1 = k/Re); curve b, after Lamb solution's pressure coefficient; curve c, proposed fit-

tings (5).

data follow Lamb's solution for low Re and Thorn's law for high Re, while Thorn's

law is an upper limit for any Re. The curve c fitting the data has been derived by

applying the result of an analytic model, which is the subject of another paper just

submitted for publication (5).
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