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INTRODUCTION

Three kinds of oscillations have been observed in the peroxidase-oxidase re-

action : simple, chaotic, and bursting (Olsen and Degn, 1977; see Fig. 1). A model

of this reaction, proposed by Degn, Olsen, and Perram (1979), displays these kinds

of oscillations in addition to what we call complex oscillations. Using a combi-

nation of numerical simulation and bifurcation analysis, our group is attempting

to systematically analyze the progression ofbehavior that leads from stable steady

states through simple and complex oscillations to chaos in the Degn-Olsen-Perram

(DOP) model. We want to be able to predict where (i.e., at what rate constants)

a given behavior (in particular, chaos) will be found in the model. This should

aid in the understanding of the peroxidase-oxidase reaction and in the design of

future experiments.

THE REACTION AND THE MODEL
Horseradish peroxidase catalyzes the oxidation ofNADH by molecular oxygen

in the reaction known as the peroxidase-oxidase (PC) reaction. The PC reaction

is oscillatory in a semi-open, well-stirred system at acidic pH (pH 5.6 is commonly
used). The semi-open system must have: 1) a constant, slow inflow ofNADH (about

10 |jiL/hour); and 2) a constant supply of gaseous O2 over the system (Degn, et

al., 1979). Oscillations occur over a variety of enzyme concentrations in the |xM

range. As can be seen in Figure 1, varying the enzyme concentration yields three

different kinds of oscillations : 1) simple oscillations with a single amplitude (Fig.

la); 2) chaotic oscillations with random mixtures of varying amplitudes (Fig. lb);

and 3) bursting oscillations with distinct quiet and active phases (Fig. Ic). In this

paper, the transition from simple oscillations to chaos will be discussed. In another

study (Aguda, et al., 1989), bursting oscillations were discussed.

The DOP model was proposed in 1979 to account for the oscillations and other

behavior found in the PO reaction. This model involves four species (O2, NADH,
and two intermediates) in an eight step mechanism and consists of the associated

mass action kinetic equations (Figure 2). This model was studied by solving the

system of four ordinary differential equations on a VAX8800 computer using an
implementation of the Runge-Kutta-Verner method (IMSL routine DIVPRK).

The DOP model yields results qualitatively similar to those seen experimen-

tally, and decreasing the rate constant k, controls the kind of oscillation observed

much as decreasing the enzyme concentration does in the experimental system

(Figure 3). The oscillations of mixed amplitude in the DOP model (e.g.. Figure

3b), however, are not necessarily chaotic but sometimes have a definite, periodic

pattern of large and small amplitudes. This type of oscillation is referred to as a

"complex oscillation." The repeating patterns in complex oscillations are conven-

iently represented by the notation L"^, where L is the number of large amplitude
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Figure 1. Experimental data from the peroxidase-oxidase reaction. The concen-

tration of O2 was measured with a Clark electrode. The shape of the oscillations

was controlled by the concentration of the enzyme horseradish peroxidase. The
enzyme concentrations were: a) 0.9 (xM; b) 0.55 |xM; and c) 0.45 |xM.

oscillations, and S is the number of small amplitude oscillations. For example,

the repeating pattern in Figure 3b is (4^ 3^ 4"*; this pattern has been confirmed

with much longer calculations than the one shown). Complex oscillations have

not yet been observed experimentally in the PO reaction; only random or chaotic

mixtures of amplitudes have been seen experimentally, as in Figure lb. The
chaotic states seen in the DOP model occur at parameter values near those yielding

complex oscillations (Larter, et al., 1988), and these two types of behavior may
be intimately related.

PHASE PORTRAITS AND BIFURCATIONS

Figures 1 and 3 are examples of time series. A time series represents a

dynamical (time dependent) system by showing how one ofthe dependent variables

changes with the independent variable, time. An alternative representation of
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A = -kiABX-k3ABY+k7-k-7A

B = -kiABX-k3ABY+k8

X = kiABX-2k2X2+2k3ABY-k4X+k6

Y = -k3ABY+2k2X2-k5Y

Where kg = kg'Xo, k7 = k7'Ao, and ks = ka'Bo, and Aq/ Bq and Xq are constants.

Figure 2. The Degn-Olsen-Perram model. A is [O2], B is [NADH], and X and Y
are the concentrations of two reaction intermediates.

the trajectory of a dynamical system is a phase portrait, in which two (or possibly

more) dependent variables are plotted against each other. The plane (or higher

dimensional space) in which a phase portrait is drawn is the system's phase space.

Figure 4 schematically shows the relationship between time series and phase

portraits for simple and complex oscillations. In either case, the trajectories in

such a system trace out a closed curve. Note that Figure 4b is actually a simple

(non-self-intersecting) closed curve in a three, or higher, dimensional phase space.

A trajectory can never actually intersect itself in phase space (Arnol'd, 1973).

Phase portraits are very useful for focusing on the qualitative behavior of a

dynamical system.

The transition from stable steady states to chaos generally does not occur

gradually but rather is punctuated by sudden, qualitative changes in behavior.

A sudden change in either a mathematical model or a physical system is called

a bifurcation (Guckenheimer and Holmes, 1983). One way to study a system's

bifurcation behavior is to first set all of its parameters (in this case, the rate

constants) so that the system is in a stable steady state and then to vary one of

the parameters (now called the bifurcation parameter) while observing how the

system's phase portrait changes as a function of the bifurcation parameter. Figure

5 schematically represents the changes in a system's phase portrait as the system

undergoes two important kinds ofbifurcations: the Hopfand the torus bifurcations.

A Hopf bifurcation occurs when a system's qualitative behavior changes from

a stable steady state to simple oscillations (a supercritical Hopf bifurcation; Segal,

1980). A system's phase portrait signals a Hopf bifurcation by changing from a
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Figure 3. Calculated time series in A ([O2]) from the DOP model. The shape of

the oscillations was controlled by the value of the rate constant k,. The values of

k| were: a) 0.12; b) 0.9; and c) 0.048. The values of the other rate constants were:

k, = 1250, k, = 0.046875, k4 = 20, k^ = 1.104, kg = 0.001, k^ = 0.89, k.7 =

0.1175, and kg = 0.5. The time units are arbitrary.
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Figure 4. Schematic time series and phase portraits for simple and complex os-

ciallations.

point to a simple closed curve called a limit cycle. The limit cycle grows as the

the bifurcation parameter moves further from the Hopf bifurcation point, and its

location in phase space may change as well. If a system has at least three degrees

of freedom, it can undergo another bifurcation which gives rise to the three di-

mensional analog of a limit cycle: a torus (which is simply the surface of a dough-

nut). A torus bifurcation can be thought of as a second Hopf bifurcation and is

technically known as a Naimark-Sacker bifurcation (Langford, 1983). Figure 6

shows a limit cycle and a torus actually calculated from the DOP model. The
bifurcation parameter in Figure 6 is ky. Notice that the trajectory covers only the

surface of the torus and does not intrude into the interior.

As demonstrated in Figure 7a, a torus can be cut and folded into a flat sheet

(Abraham and Shaw, 1984). Under some conditions, a trajectory can wind around
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Figure 5. Schematic bifurcation diagram. The system starts (at the left) at a

stable steady state. As the bifurcation parameter is tuned, the steady state moves,

and then the system undergoes a Hopf bifurcation. As the bifurcation parameter

is tuned past the Hopf bifurcation point, a limit cycle grows out of the (now

unstable) steady state. The oscillations continue to grow, and then the system

undergoes a second Hopfbifurcation, a torus bifurcation. Past the torus bifurcation

quasiperiodic (see text) oscillations grow out of the (now unstable) limit cycle.

a torus forever without ever exactly retracing itself, and in the limit of infinite

time, it will then densely cover the torus (or flat sheet). When a system densely

covers the torus, it is called quasiperiodic (Figure 7b). Under other conditions,

after one (or more) trips around the torus, a trajectory may begin to exactly retrace

itself, so that it will not densely cover the torus. This latter behavior is called

frequency locking (Figure 7c). The complex oscillations that have been observed

in the DOP model (as well as other models of the PO reaction and other chemical

oscillators) are examples of frequency locking; however, the quasiperiodic states

that densely cover the torus have not been reported until now (nor had the torus

bifurcation itself been identified in any model of the PO reaction). A quasiperiodic

state and a nearby frequency locked state are shown in Figure 8 (Figure 6b is

also an example of quasiperiodicity). These diagrams show clearly that the fre-

quency locked state is a trajectory on the surface of a torus.

COMPLEX OSCILLATIONS AND CHAOS

Simple frequency locking does not account for many ofthe complex oscillations

that we have found in the DOP model. Figure 10 shows two complex oscillations
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Figure 6. Phase portraits from the DOP model showing a limit cycle (6a) and a

torus (6b). All rate constants except kj and k7 are as in Figure 3, and in both 6a

and 6b, ki = 0.0761555. The limit cycle in 6a was obtained with k^ = 0.2. The
torus in 6b was obtained with k^ = 0.15. Notice how tightly wound the trajectory

in 6b is (only one trip around the torus is shown). Also, the inner and outer

diameters of the torus are nearly identical.

at very similar parameter values. The state in Figure 10a is 4'°, while that in

10b is (4^^ 4"). The intriguing thing about Figure 10b is that the small oscillations

appear to go through two different sized holes. To cover such a doughnut (with

two holes) with a simple torus requires the mathematical impossibility that the

torus should intersect itself.

A possible explanation for Figure 10b is that the system has undergone a

third Hopf bifurcation. The result of a third Hopf bifurcation would be a three-

torus (Berge, et al., 1984) as opposed to a two-torus, which is what we've been

looking at up to now). A three-torus is a three dimensional surface of a four

dimensional object, so the trajectory in Figure 10b could sit on (actually in) a

three-torus without necessitating that the torus intersect itself. A third Hopf
bifurcation is possible in the DOP model, because it has four variables and there-

fore a four dimensional phase space (up to this point, only two dimensional pro-

jections from this four dimensional space have been discussed).

A three-torus can be unfolded to a solid parallelepiped (a higher dimensional

analog to Figure 7a cannot be drawn, since this would require four dimensions).

On a flat sheet (i.e., a two-torus), only quasiperiodicity or frequency locking can

occur, because the trajectory must be parallel to itself every time it goes around

the torus (or across the sheet), otherwise it would intersect itself, which it cannot

do. In a three-torus (a solid region), however, there is much more freedom of

movement and the trajectory need not remain parallel to itself in order to avoid

self intersection. So a new type of behavior that is neither quasiperiodic nor

frequency locked is possible on a three-torus. This new type of behavior is chaos

(Berge, et al, 1984).

The chaotic states found in the DOP model occur at parameter values close

to where complex oscillations of the type shown in Figure 10b occur. In a previous
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Figure 7. 7a shows how to turn a torus into a flat sheet. Since there are two

independent angles of rotation on the torus, two edges of the sheet can be des-

ignated as axes, and cf), going from to 2-77. When either ofthe two angles reaches

the value 27t, it is reset to 0, leaving the other angle unchanged. In other words,

if a trajectory leaves the sheet at the top (left) it comes back on the bottom (right).

7b shows the path of a trajectory once around the torus (spread out on a sheet)

in a quasiperiodic state and indicates that the trajectory will not retrace itself.

Figure 7c shows a frequency locked state and indicates how it repeats itself every

time it goes around the torus.

study, the complex oscillations in the DOP model were shown to form a devil's

staircase structure (Larter, et al., 1981). In this devil's staircase structure, pa-

rameter values at which complex oscillations of the type L^ (such as 4'") occur are

separated by parameter values at which combinations of the type (L^), (L^)2 . . .

{\j')n, such as (4^ 4"), occur. It seems that most of these combination states are

periodic, that is, the combinations are regular. But chaotic states also exist, in

which the combinations become random, as they do in the experimental system.

A third Hopf bifurcation (the existence of which is still speculative) could explain

the origin of both the regular and chaotic combinations as well as why they occur

together in parameter space.
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Figure 8. Phase portraits to illustrate frequency locking on a torus. A semilog

scale is used both here and in Figure 10. All rate constants except k^ and ky are

as in Figure 3. In both 8a and 8b, k^ = 0.775, while in 8a, k, = 0.2, and in 8b,

ki = 0.15. Figure 8a is a quasiperiodic state that has already wrapped around

the torus several times. Figure 8b is a frequency locked state. Notice that the

torus has moved and changed shape somewhat between 8a and 8b.

CONCLUSION

The simple and complex oscillations in the DOP model arise from a Hopf and

a torus bifurcation, respectively. Also, we now know (from using AUT086) where

these bifurcations occur, so that we can now predict accurately where simple and

complex oscillations exist in the DOP model without doing time consuming and

costly numerical simulations on a computer. Since the rate constants chosen in

our bifurcation analysis correspond to experimentally manipulable parameters,

this significantly enhances the predictive power of the DOP model. Additionally,

quasiperiodic states have been formed, which previously were the "missing-link"

in the transition from simple to complex oscillations in this model. Finally, we
have shown how a third Hopf bifurcation, if it exists, could account for both the

regular and chaotic combinations of complex oscillations that have been observed

and that cannot be explained by simple frequency locking on a two-torus.
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Figure 9. Two-parameter bifurcation diagram for the PO reaction. The two par-

ameters are k, and kv, as indicated on the axes. Figure 9b is a close-up of the part

of 9a containing the torus bifurcation curve, which is barely visible in the lower

left of 9a.
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Figure 10. Phase portraits illustrating the two types of complex oscillations. 10a

shows a 4'° state that can easily be explained by frequency locking on a two-torus.

10b shows a (4^ 4") state in which the smaller oscillations appear to trace out

two differently sized holes.
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that the three-torus explanation suggested above as a possible mechanism by

which chaos might arise in this model is not correct. Rather, the two dimensional

torus goes through a "wrinkling" transition and breaks up into a fractal object

which can support chaotic dynamics (Steinmetz and Larter, 1991; Larter and

Steinmetz, 1991).
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