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Introduction

Methylviologen, the best known electron acceptor in Photosystem I of spinach

chloroplasts, or other viologen-type compounds presumably accept electrons from

the reaction center complex or from a bound iron-sulfur protein associated with

this complex (1). The purpose of this study was to look for other artificial elec-

tron acceptors in the methylviologen region and to find unique inhibitors, which

would differentiate between these pathways. L-Methionine sulfoximine proved

to be such an electron acceptor, capable of differentiating a site after the

methylviologen site. Such a conclusion was reached on the basis of using

l-(2-thiazolylazo)-naphthol as a specific inhibitor for the new pathway.

Materials and Methods

Chloroplasts were isolated from market spinach in 0.4 M sucrose and 0.05

M NaCl as previously described (2). Chlorophyll was determined according to Ar-

non (3). Oxygen uptake was measured with a Clark-type oxygen electrode accor-

ding to Barr and Crane (2). Reaction mixtures for assays are given in figure legends.

Reaction rates were recorded with a Sargent-Welch SRG recorder.

Results and Discussion

L-methiomine sulfoximine gives oxygen uptake like methylviologen when used

as an electron acceptor in PS I. As Table I shows, optimum reaction rates were

obtained with a concentration between 50 and 100 /M. at pH 7. The H 2
—

Assay Conditions for the Photosystem I Reaction

H2O — Methionine Sulfoximine (+ Na Azide)

I Optimum Concentration

Methionine Sulfoximine Reaction Rate

(lM) (nq uiv. 2
/mg chl'hr)

25 192

50 226

75 395

100 338

75 (minus Na azide) 68

75 (minus NH
4
C1) 90

II Optimum pH

pH 6 297

pH 7 395

pH 8 221
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Inhibition of the H2O — Methionine Sulfoximine

Reaction by Standard Inhibitors

Electron T "ansport

Inhibitor Cone. H
2

- MV ( + azide), pH 7 H
2

- MSO ( + azide), pH 7

Rate
3

Inhibition Rate
a

Inhibition

(lM) (%) (%)

None 538 310

DCMU 5.0 100 100

DBMIB 2.5 56 90 56 82

Bathophenanthroline 100 60 89 42 86

Polylysine

(M.W. 30,000) 50 /ig/ml 96 82 62 80

a
^quiv. Oomg chl •hr

methylviologen ( + azide) and the H
2
— methionine sulfoximine (+ azide) reac-

tions were inhibited to a similar extent by the standard inhibitors for sites bet-

ween the 2 photosystems: DCMU for the B protein site (4), dibromothymoquinone

for the plastoquinone pool (4), bathophenanthroline for the Rieske iron-sulfur protein

located between the plastoquinone pool and cytochrome f (5), and polylysine for

plastocyanin (6). These inhibitions range from 92-100% for both reactions (Table

II). Ions, such as Ca 2 + , Mg2
+, Sr 2 + , or Ba 2 + stimulate both reactions (Fig. 1 and

2), although to a lesser degree on the H
2
0— methionine sulfoximine pathway.

20 30

Ion Added (mM)

Figure 1. Stimulation ofElectron Transport in Spinach Chloroplasts by Ions. The

reaction tested was H.20^ methylviologen ( + azide), pH 7. The reaction mixture con-

tained chloroplasts (0.05 mg. chlorphyll), 25 mM Tris-Mes, pH 7, 5mM NH^Cl, 0.5

mMNa azide, and 0.5 mMMV. The control rate was 530 uequivalents O^mg chl*hr.
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Figure 2. Stimulation ofElectron Transport in Spinach Chloroplasts by Ions. The

reaction tested was H^^" methionine sulfoximine (+azide), pH 7. The reaction mix-

ture contained chloroplasts (0.05 mg chlorophyll), 25 mM Tris-Mes, pH 7, 5mMNHACl,

0.5 mM Na azide, and 75 /xM MSO. The control rate was 281 fiquiv. Og/mg chl»hr.

The data presented so far allow no differentiation between the two pathways.

Only the use of such an iron chelator as l-(2-thiazolylazo)-naphthol (Fig.3) or in-

cubation with sodium selenite (Fig. 4) uncovers differences. As Fig. 3 shows, the

iron chelator inhibits the H
2
0^ methionine sulfoximine pathway more than 80%,

2 4

1-(2-thiazolylazo)-naphthol (piM.

Figure 3. The Inhibition of Electron Transport in Spinach Chlorophasts by

l-(2-Thiazolylazo)-Naphthol. The control rate for H2O—MV (+ azide), pH 7 was 575

fiequiv. O^mg chUhr, for H20~MSO (+ azide), pH 7, it was 293. The reaction mix-

tures were as in Figures 1 and 2.
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Figure 4. The Inhibition ofElectron Transport in Spinach Chloroplasts by Sodium

Selenite. The control rate for H2O—MV (+ azide), pH 7 was J+96 fiequiv. 02^g chUhr,

for H2O—MSO (+ azide), pH 7 it was 338. The reaction mixture were as Figures

1 and 2.

but the H
2
— methylviologen pathway over 50%. This indicates that the new elec-

tron acceptor methionine sulfoximine is able to reach a site past where

methylviologen accepts electrons in PS I. This new site may be a bound iron-

sulfur protein, several of which have been detected by studies of PS I reaction

center particles by flash-induced absorption changes (7,8) or by EPR spectroscopy

(9). With the idea in mind that selenium ions can replace sulfur in iron-sulfur

protein cores (10), a 120-min. incubation of chloroplasts with sodium selenite was

undertaken. As Fig. 4 shows, the H
2
0— methylviologen reaction was inhibited

about 50% in two hours, but the H
2
— methionine sulfoximine pathway was in-

hibited only about 5% compared to its sucrose-NaCl control. However, since the

methionine sulfoximine pathway and its control lost about 60% activity, it is possi-

ble that the acceptor site reached by methionine sulfoximine is an iron-sulfur

site exposed to the outside of the membrane, which has lost its labile sulfur dur-

ing incubation, while exposed to atmospheric oxygen. A total of 3-4 bound iron-

sulfur centers are known to exist in PS I (11). It is also known that the sulfur

in iron-sulfur clusters is labile, particularly when exposed to atmospheric oxygen

(12). The fact that selenite was able to inhibit the H
2
^ methylviologen pathway

50%, implies that its iron-sulfur was originally less exposed to the outside than

the presumed iron-sulfur on the H
2
0^ methionine sulfoximine pathway.

In conclusion, it can be seen that L-methionine sulfoximine can act as an

electron acceptor in PS I and that it may accept electrons at a different point

that methylviologen. This site is more sensitive to loss of activity in contrast

to the selenium-inhibited iron-sulfur site found on the methylviologen pathway.
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