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With the launch of Landsat- 1 in July of 1972, man entered a new era for obtain-

ing information about earth resources. Landsat- 1 was the first unmanned satellite design-

ed specifically for collecting data about earth resources on a global, repetitive, multispec-

tral basis.

Technology developed rapidly during the seventies for processing and analysis

of the digital multispectral scanner data that was collected by Landsat. There was a

great deal of interest in the multispectral data—commonly referred to as MSS data

—

and many applications were developed. Two more Landsat satellites with MSS sensors

were launched before the end of the decade.

Another milestone in Earth resource observations occurred in July 1982 when

the fourth satellite in the Landsat series was launched. In addition to a MSS sensor,

a new improved sensor called the Thematic Mapper (TM) was carried aboard Landsat-4.

The TM sensor has improved spatial resolution and spectral dimensionality as com-

pared to the MSS sensor (see Table 1). The MSS sensor collects data in only four

Table 1. Comparison of Landsat Scanning Sensors. Adapted from (2).

Thematic Mapper Multispectral Scanner

(TM) (MSS)

Spectral Band Wavelength Spectral Ground Wavelength Spectral Ground

Designation Range Region IFOV Range Region IFOV

1 0.45-0.52 fim Visible Blue 30 m 0.5-0.6 nm Visible Green 80 m
2 0.52-0.60 Mm Visible Green 30 m 0.6-0.7 ^m Visible Red 80 m
3 0.63-0.69 nm Visible Red 30 m 0.7-0.8 nm Near Infrared 80 m
4 0.76-0.90 nm Near Infrared 30 m 0.8-1.1 tim Near Infrared 80 m
5 1.55-1.75 ^m Middle Infrared 30 m
6 2.08-2.35 /xm Middle Infrared 30 m
7 10.40-12.50 ftm Thermal Infrared 120 m

spectral bands—two in the visible and two in the near infrared region of the elec-

tromagnetic spectrum-whereas the TM sensor collects data in seven spectral band

—

three in the visible, one in the near infrared, two in the middle infrared, and one

in the thermal infrared region. Because of the relatively low level of energy emitted

in the thermal infrared region, the spatial resolution of this band is 120 meters—much

larger than the other TM or MSS bands. The resolution, expressed as instantaneous

field of view (IFOV), for the remaining six bands of the TM sensor is 30 meters as

opposed to approximately 80 meters for the MSS sensor.

Many studies, including those by Hoffer et al. (4), Kalensky and Scherk (5),

and Strahler et al. (7), have shown that MSS data is useful for classifying geographic

areas into broad cover types. Given the improvements of TM data, the purpose of

this study was to determine the utility of TM data for classifying a predominantly

forested area into broad cover types. The objectives were twofold:

297



298 Indiana Academy of Science Vol. 94 (1985)

1) Evaluate the utility of wintertime Thematic Mapper data for classifying forest

and other broad cover types using supervised training statistics and a minimum
distance classifier.

2) Determine the value of different wavelength bands and combinations of bands

for classifying the various cover types.

Procedures

The TM data were obtained by Landsat 4 on December 18, 1982. The study area

was composed of St. Regis Corporation land in Baker County, Florida. Reference

data used to interpret the TM data included 1:58,000 color infrared aerial photographs

obtained on January 24, 1983, and a forest stand map that included stand boundaries,

species, and ages. This map and the associated information was provided by the St.

Regis Forest Resource Information System (FRIS) Center. Field visits (August and

October 1984) to the study area by the authors provided a better understanding of

the characteristics of the forest and other cover types present. Comparisons of the

reference data and the spectral cluster maps proved to be very beneficial when analyz-

ing and interpreting the TM data.

The study area was predominantly forested. Major forest types in the area were

slash and longleaf pine (the former often in plantations), and also pondcypress and

mixed hardwoods principally occurring in shallow ponds or bays (1). A small number

of agricultural areas were located within the study area and a small amount of exposed

water was present.

After viewing the aerial photographs, the St. Regis forest stand map, and a gray-

scale printout of the TM data, it was determined that all the land cover types of the

study area could be divided into six broad cover type classes, called information classes.

The informational classes of interest included: three classes of pine forest—Young (0

to 5 years), Medium-Aged (6 to 10 years), and Older (11 or more years); Deciduous

Forest; Agricultural Areas; and Water. Because of spectral variability within some of

these informational classes, it was determined that nine spectral classes were needed

in order to adequately represent the informational classes defined.

As indicated previously, at any one instant of time, the Thematic Mapper scan-

ner on the Landsat satellite measures the reflectance and thermal emission in each

of seven wavelength bands over a resolution element (or pixel) that represents an area

on the ground of 30 meters by 30 meters (120 meters by 120 meters for band 7). These

measurements provide the sets of data values that define the spectral patterns of the

various cover types on the ground. In order to use a computer to classify satellite

spectral data, the analyst must "train" the computer to recognize specific spectral

patterns and then classify the data having these defined spectral patterns into the in-

formational classes of interest. Such computer classification is based upon statistical

pattern recognition theory—a well-documented body of knowledge used in many

disciplines (8).

The first step in computer classification involves the definition of a set of train-

ing data that statistically represents the informational classes of interest. This step is

one of the most critical parts of the entire classification procedure (3).

In our analysis, we started by studying the St. Regis forest stand map and color

infrared photographs and selecting potential training areas. Each training area involved

a single cover type. Several training areas were defined for each cover type, so every

spectral class in the study area would be represented in the training data set. The digital

format TM data were then displayed on a Comtal Vision One/20 digital display unit

as a color infrared composite (the digital equivalent of a color infrared photograph).
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The pixel coordinates of potential training areas were then designated. Each training

area consisted of several contiguous pixels, and at least three such training areas were

defined for each spectral class. Additional training areas were defined, if necessary,

so that a minimum of 70 pixels (10 times the maximum number of wavelength bands

used) would be included in the training statistics for each class, in-so-far as possible.

The statistical characteristics of the training areas were then defined using the

LARSYS software system. These statistics included the mean and covariance matrix

of the seven bands for each spectral class (6), and provided the information necessary

for computer classification of the various informational classes.

The next step involved the actual classification of the TM data. The classification

process involves the use of an algorithm to compare the training data statistics to the

reflectance and emission values measured by the TM scanner for each pixel in the

entire data set. Several classification algorithms are available within the LARSYS soft-

ware. For this study, we used the relatively simple and fast minimum Euclidean distance

classification algorithm of the CLASSIFYPOINTS processor. A detailed description

of this processor and the entire LARSYS software system is documented by Phillips (6).

To test quantitatively the accuracy of the classifications, a set of "test areas"

were defined. Each test area consisted of a block of pixels thought to be representative

of the six informational classes present. (Thus, a test area is very similar to a training

area, but is used for an entirely different purpose.) A systematic statistical sampling

procedure was used to define the test data locations so that the training areas and

test areas were obtained from mutually exclusive locations in the data set. Fifty-three

test fields totalling 2372 pixels were thus defined for this study.

In order to evaluate the utility of the various TM wavelength bands for purposes

of computer classification, a method to assess the information content of each wavelength

band and band combination was required. Part of the LARSYS software (i.e.

SEPARABILITY) involves a "feature selection" technique which allows the analyst

to determine the optimum combination of bands to use, given any set of one through

"n" wavelength bands. Transformed divergence (TD), a statistical distance measure,

is calculated between all possible pairs of spectral classes for the specific combination

of wavelength bands being considered. When the TD is large (e.g. values above 1900;

maximum is 2000), there is a high probability that the two spectral classes can be

discriminated and a correct classification will result (8).

For this study, the "best" combinations of wavelength bands for each set of

the one through seven bands of TM data were defined using the average and minimum
TD values. Large average and minimum TD values were desirable as this indicated

that the classes were spectrally separable. Generally, only the minimum TD values

defined for each pair of spectral classes representing different informational classes

(rather than spectral classes within the same informational class) were utilized.

Based upon the Transformed Divergence results for determining the optimum
one through seven wavelength band combinations, seven separate classifications of

the data were then obtained, and the results were quantitatively summarized using

the test fields that had been previously defined. The key point here is that the same

training and test data were used for each of the seven classifications—the only variables

were the number and combinations of wavelength bands utilized.

Results and Discussion

The "best" channel combinations and their average transformed divergences are

summarized in Table 2. The performances for each of the seven classifications were
assessed using the classification results for the test fields. Table 3 is the LARSYS-
generated classification performance matrix for the "best" combination of four bands,
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Table 2. "Best" wavelength band combinations selected and their associated average

and minimum transformed divergences.

Number

CHANNELS
Bands

TRANSFORMED DIVERGENCL
Minimum Average

5

4,5

4,5,7

3,4,5,7

3,4,5,6,7

2,3,4,5,6,7

1,2,3,4,5,6,7

532 1

1781

1837'

1938'

1950'

1952'

1955'

1761

1980

1987

1991

1992

1993

1993

'Lower transformed divergence did occur between two spectral classes within the same information class.

namely, bands 3, 4, 5, and 7, showing how the test pixels were classified. Such a matrix

was generated for each of the seven classifications. The classification results for all

classifications are summarized in Table 4.

Table 3. Classification Performance Matrix for the "Best" Combination of Four Bands.

(Fl = Young Pine Forest, F+ = Medium-Aged Pine Forest, F* = Older Pine Forest,

FD = Deciduous Forest, AA = Agricultural Areas, WW = Water)

FOREST LABORATORY FOR APPLICATIONS OF REMOTE SENSING OCT. 31, 1984

RESULTS 4 PURDUE UNIVERSITY 08 48 01 AM
LARSYS VERSION 3

CLASSIFICATION STUDY 430540387 CLASSIFIED OCT. 31, 1984

CLASSIFICATION WRITTEN ON DISK

CHANNELS USED
Channel 3 Spectral Band 0.63 TO 0.69 Micrometers Calibration Code =1 CO = .0

Channel 4 Spectral Band 0.76 TO 0.90 Micrometers Calibration Code =1 CO = .0

Channel 5 Spectral Band 1.55 TO 1.75 Micrometers Calibration Code =1 CO = .0

Channel 7 Spectral Band 10.40 TO 12.50 Micrometers Calibration Code =1 CO = .0

SPECTRAL INFORMATION CLASSES SPECTRAL INFORMATION
CLASS CLASS CLASS CLASS

1 Fl Fl 6 Al AA
2 F + F + 7 A2 AA
3 F* F* 8 A3 AA
4 FD FD 9 w WW
5 FDC FD

TEST CLASS PERFORMANCE
NUMBER OF SAMPLES CLASSIFIED INTO

INFORMATION NO OF PCT.

CLASS SAMPS CORCT
1 Fl 351 71.8

2 F + 235 98.3

3 F* 1141 99.1

4 FD 432 95.4

5 AA 207 97.1

6 WW 6 83.3

TOTAL 2372

Fl F + F* FD AA WW
252 99

3 231

5 1131 5

5 15 412

6 201

1 5

261 241 1147 418 300

Overall performance ( 2232/ 2372) = 94.1

Average Performance By Class ( 545.0/ 6) = 90.8

10103 CPU TIME USED WAS 3.813 SECONDS (LARSMN)
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Table 4. Summary of Classification Results.

Classification Performance (%)

Number

of

Test

Pixels

Number of TM Wavebands

(Specific TM Wavebands)

1

(5)

2

(4,5)

3 4

(4,5,7) (3,4,5,7)

5

(3-7)

6

(2-7)

7

(1-7)

Young Pine

Forest 351 68.9 72.4 72.4 71.8 66.4 66.4 64.7

Medium-Aged

Pine Forest 235 70.6 97.4 97.4 98.3 98.3 98.3 99.1

Older Pine

Forest 1141 81.3 98.9 98.9 99.1 99.6 99.6 99.5

Deciduous

Forest 432 93.8 95.4 95.6 95.4 95.1 95.1 94.9

Agriculture

Areas 207 81.2 97.1 97.1 97.1 96.1 96.1 - 96.6

Water 6 83.3 83.3 83.3 83.3 83.3 83.3 83.3

Overall

Performance 2372 80.7 94.0 94.1 94.1 93.4 93.4 93.2

Average

By Class 79.9 90.8 90.8 90.8 89.8 89.8 89.7

The overall performance for the classifications was high in all cases, except when
only one TM wavelength band was used. Disregarding the one-band classification, the

classification performance values for the individual informational classes were also

very high except for the Young Pine Forest and Water classes. The low performance

for the Young Pine Forest class is due to the fact that a significant number of pixels

were being misclassified into the Agricultural Areas class. This is not surprising since

the class Young Pine Forest includes recently harvested areas which consist of residual

understory vegetation mixed with bare soil. This is spectrally similar to the situation

often found in Agricultural Areas where agricultural crops and bare soil are mixed.

This confusion is illustrated in Table 3 where Fl is the Young Pine Forest information

class and AA is the Agricultural Areas information class. The relatively low classifica-

tion performance for water stems from the fact that there was very little exposed water

in the study area. With LARSYS, the test field must be rectangular. In the process

of selecting a rectangular test field for a small, non-rectangular water body, one pixel

(of six) was apparently an edge pixel—a mixture of two spectral classes—and was

therefore misclassified. The small number of Water test pixels is directly related to

the small amount of exposed water in the study area.

Conclusions

The results of this study show that:

Forest and other broad cover type groups can be classified with a high degree

of accuracy using wintertime Landsat Thematic Mapper data.

Even the relatively simple minimum distance classification algorithm achieved highly

accurate classification results for the six informational classes defined.

The 1.55-1.75 /mi middle infrared wavelength band was found to be the single

most useful band for discrimination between the spectral classes defined.
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The "best" combination of two wavelength bands included a band in the near

infrared (0.76-0.90 /mi) and a band in the middle infrared (1.55-1.75 /mi) portion

of the electromagentic spectrum.

The 10.4-12.5 /im thermal infrared wavelength band appears to provide signifi-

cant additional information for the classification process.

The "best" combination of four wavelength bands included one band from each

of the four major portions of the spectrum—visible, near infrared, middle in-

frared, and the thermal infrared.
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